

Corporate Accreditation No 63

Accredited for compliance with ISO/IEC 17025 - Testing

Analytic	OGNISED	290108	Delivery	Address:	Sydney Water Corporation 51 Hermitage Rd West Ryde NSW 2114
Issue Date: Issued By :	26/08/2023 Sydney Wate	er Laboratory Services	Telephor Email:	ne:	(02) 9800 6935 analyticalservices@sydneywater.com.au
A	Attention:	Walter Chitsike	Address:	PO Box 482	, Taree NSW 2430
с	sustomer:	Midcoast Environmental Laboratory	Telephone:	02 6591 756	33
с	ustomer ID:	ZFEL	Email:	Walter.Chitsil	ke@MidCoast.nsw.gov.au

CONTENTS

- 1. Sydney Water Approved Signatory
- 2. Sample Summary
- 3. Analytical results
- 4. Comments
- 5. Laboratory QC results

Sydney Water Approved Signatory

Jeya Gajendran, Clean & Waste Water Analyst	David Choueifati, Metals Laboratory Supervisor	Adam Mtashar, Metals Analyst
Abhilasha Bhandari, Organics Analyst	Justice Esoun-Nyarkoh, Organics Analyst	

Where a result is required to meet a compliance limit or specification the associated uncertainty must be considered. Uncertainty estimates are available for all accredited test results.

SAMPLE SUMMARY

<u>Client</u>	<u>Sample</u>	<u>Sampling</u>	<u>Date</u>	<u>Date</u>	<u>Date</u>	Description
Sample ID	<u>Number</u>	Procedure	Sampled	<u>Received</u>	<u>Authorised</u>	
M231130/3	L23065260	1	09/08/2023	11/08/2023	25/08/2023	MB:03 (EW)

Sampling procedures

1 Samples analysed as received.

2 Samples collected as per FS procedures SAWI 070, Excluding Oil & Grease which is collected as per clients instructions.

3 Samples collected as per FS procedures SAWI 070.

4 Results reported as received from WNSW.

ANALYTICAL RESULTS

							· · · · · · · · · · · · · · · · · · ·		
Client Sample ID		M231130/3							
Sampled Date		09/08/2023 11:27:00 AM							
Sample Number		L23065260							
CHEMISTRY				•	•			•	
WC26NS : Oil & Grease									
Oil & Grease	mg/L	<3							
Pet H/C	mg/L	<3							
Date of Performance	DD/MM/YY	15/08/23							
EXTERNAL TESTING									
XAL_PHNT : Total Phenolics a	inalysed by AL	S							
Courier*	N/A	TNT - Road							
Total Phenolics	mg/L	<0.05							
METALS	•								
TM01TU : Mercury by CV-AFS	;								
Total Mercury	ug/L	0.03							
Date of Performance DD/MM/YY 17/08/23									
TM70SDT : Single digestion for	or Metals								
*									

* Indicates NATA accreditation does not cover the performance of this service

"-" = Not required or refer to Laboratory comment

				1	1		1	
Client Sample ID		M231130/3						
Sampled Date		09/08/2023 11:27:00 AM						
Sample Number		L23065260						
METALS			-					-
TM70SDT : Single digestion	for Metals(Cont	tinued)						
			F	F	1	1	1	1
Total Digestion	DONE	Done						
Date of Performance	DD/MM/YY	16/08/23						
TM70TW : Metals by ICPAES	S.							
Total Aluminium	mg/L	2.54						
Total Arsenic	mg/L	<0.02						
Total Barium	mg/L	0.067						
Total Cadmium	mg/L	<0.005						
Total Calcium	mg/L	69.9						
Total Chromium	mg/L	<0.005						
Total Cobalt	mg/L	<0.005						
Total Copper	mg/L	<0.005						
Total Iron	mg/L	1.81						

			-			
Client Sample ID		M231130/3				
Sampled Date		09/08/2023 11:27:00 AM				
Sample Number		L23065260				
METALS				-	-	
TM70TW : Metals by ICPAES	S.(Continued)					
Total Lead	mg/L	<0.01				
Total Magnesium	mg/L	44.6				
Total Manganese	mg/L	0.539				
Total Potassium	mg/L	6.10				
Total Sodium	mg/L	64.9				
Total Zinc	mg/L	0.02				
Date of Performance	DD/MM/YY	16/08/23				
ORGANICS						
TC001WLL : Organochlorine	Pesticides					
Hexachlorobenzene	ug/L	<0.01				
alpha-BHC	ug/L	<0.01				
Lindane (gamma-BHC)	ug/L	<0.01				

			1	1				
Client Sample ID		M231130/3						
Sampled Date		09/08/2023 11:27:00 AM						
Sample Number		L23065260						
ORGANICS					-	-	-	
TC001WLL : Organochloring	e Pesticides(Cor	ntinued)						
Heptachlor	ug/L	<0.01						
Aldrin	ug/L	<0.01					<u> </u>	
beta-BHC	ug/L	<0.01						
delta-BHC	ug/L	<0.01						
Heptachlor Epoxide	ug/L	<0.01						
alpha-Endosulfan	ug/L	<0.01						
gamma-Chlordane	ug/L	<0.01						
alpha-Chlordane	ug/L	<0.01						
4,4-DDE	ug/L	<0.01						
Dieldrin	ug/L	<0.01						
Endrin	ug/L	<0.01						
4,4-DDD	ug/L	<0.01						

lient Sample ID		M231130/3							
ampled Date		09/08/2023 11:27:00 AM							
Sample Number		L23065260							
ORGANICS									
TC001WLL : Organochlor	ine Pesticides(Con	tinued)							
beta-Endosulfan	ug/L	<0.01							
4,4-DDT	ug/L	<0.01							
Methoxychlor	ug/L	<0.01							
Endosulfan Sulphate	ug/L	<0.01							
Total Chlordane	ug/L	<0.01							
OC surrogate*	% Recovery	51							
Aldrin + Dieldrin*	ug/L	<0.01							
Endrin aldehyde*	ug/L	<0.01							
Endrin ketone*	ug/L	<0.01							
Total Tested DDT*	ug/L	<0.01							
Date of Performance	DD/MM/YY	15/08/23							
TC003WLL : Polychlorinated Biphenyls (PCBs)									

				-	 		
Client Sample ID		M231130/3					
Sampled Date		09/08/2023 11:27:00 AM					
Sample Number		L23065260					
ORGANICS			-			-	
TC003WLL : Polychlorinated	l Biphenyls (PCE	3s)(Continued)					
PCB TOTAL	ug/L	<0.1					
PCB surrogate*	% Recovery	70					
Date of Performance	DD/MM/YY	15/08/23					
TC004WLL : Polynuclear Arc	omatic Hydrocar	bons		-	-		
Naphthalene	ug/L	<0.1					
Acenaphthene	ug/L	<0.1					
Fluorene	ug/L	<0.1					
Phenanthrene	ug/L	<0.1					
Anthracene	ug/L	<0.1					
Fluoranthene	ug/L	<0.1					
Pyrene	ug/L	<0.1					
Benzo(a)anthracene	ug/L	<0.1					

				1		
Client Sample ID		M231130/3				
Sampled Date		09/08/2023 11:27:00 AM				
Sample Number		L23065260				
ORGANICS						
TC004WLL : Polynuclear Aro	matic Hydrocar	bons(Continued)				
Chrysene	ug/L	<0.1				
Benzo(b)fluoranthene	ug/L	<0.1				
Benzo(k)fluoranthene	ug/L	<0.1				
Benzo(e)pyrene	ug/L	<0.1				
Benzo(a)pyrene	ug/L	<0.1				
Indeno(1,2,3-cd)pyrene	ug/L	<0.1				
Dibenzo(a,h)anthracene	ug/L	<0.1				
Benzo(ghi)perylene	ug/L	<0.1				
Total Detectable TDPAH	ug/L	<0.1				
PAH surrogate*	% Recovery	79.56				
Benzo(a)pyrene TEQ	ug/L	<0.1				
Acenaphthylene	ug/L	<0.1				

		1		1	i	1	r
Client Sample ID		M231130/3					
Sampled Date		09/08/2023 11:27:00 AM					
Sample Number		L23065260					
ORGANICS							-
TC004WLL : Polynuclear Arc	omatic Hydrocar	bons(Continued)					
Perylene	ug/L	<0.1					
Date of Performance	DD/MM/YY	16/08/23					
TC0056DW : Multi-Residue I	Pesticide Analys	sis by UPLCMSMS					
Dichlorvos	ug/L	<0.025					
Mevinphos	ug/L	<0.025					
Ethoprop	ug/L	<0.025					
Demeton-S-Methyl	ug/L	<0.025					
Diazinon	ug/L	<0.025					
Fonofos	ug/L	<0.025					
Isazophos	ug/L	<0.025					
Dimethoate	ug/L	<0.025					
Methyl chlorpyrifos	ug/L	<0.025					

		1		I	1		
Client Sample ID		M231130/3					
Sampled Date		09/08/2023 11:27:00 AM					
Sample Number		L23065260					
ORGANICS							
TC0056DW : Multi-Residue	Pesticide Analy	sis by UPLCMSMS(C	Continued)				
Ethyl chlorpyrifos	ug/L	<0.025					
Malathion	ug/L	<0.025					
Fenthion	ug/L	<0.025					
Fenitrothion	ug/L	<0.1					
Parathion	ug/L	<0.025					
Phospholan	ug/L	<0.025					
Fensulfothion	ug/L	<0.025					
E.P.N	ug/L	<0.1					
Methyl azinphos	ug/L	<0.025					
Ethyl azinphos	ug/L	<0.1					
metsulfuron-methyl	ug/L	<0.1				 	
Molinate	ug/L	<0.025					

		1						
Client Sample ID		M231130/3						
Sampled Date		09/08/2023 11:27:00 AM						
Sample Number		L23065260						
ORGANICS				•	•	•	•	
TC0056DW : Multi-Residue	e Pesticide Analys	sis by UPLCMSMS(C	Continued)					
Atrazine	ug/L	<0.025						
Chlorfenvinphos	ug/L	<0.025						
Pirimiphos methyl	ug/L	<0.025						
Propiconazole	ug/L	<0.025						
Simazine	ug/L	<0.025						
Bromophos ethyl	ug/L	<0.025						
Coumaphos	ug/L	<0.025						
Ethion	ug/L	<0.025						
Fenamiphos	ug/L	<0.025						
Monocrotophos	ug/L	<0.025						
Parathion Methyl	ug/L	<0.025						
Prothiofos	ug/L	<0.05						

				1	1			
Client Sample ID		M231130/3						
Sampled Date		09/08/2023 11:27:00 AM						
Sample Number		L23065260						
ORGANICS							-	
TC0056DW : Multi-Residue	e Pesticide Analys	sis by UPLCMSMS((Continued)					
Sulfotep	ug/L	<0.025						
Pirimiphos Ethyl	ug/L	<0.025						
Tetrachlorvinphos	ug/L	<0.025						
Propazine	ug/L	<0.025						
Trithion	ug/L	<0.1						
Diuron	ug/L	<0.1						
Hexazinone	ug/L	<0.1						
Temephos	ug/L	<1						
Carbaryl	ug/L	<0.1						
Disulfoton	ug/L	<0.1						
Phorate	ug/L	<0.1						
Acephate	ug/L	<0.5						

				1	1	L			
Client Sample ID		M231130/3							
Sampled Date		09/08/2023 11:27:00 AM							
Sample Number		L23065260							
ORGANICS						-	-	-	
TC0056DW : Multi-Residue P	esticide Analys	is by UPLCMSMS(0	Continued)						
Aldicarb	ug/L	<0.1							
OP surrogate*	% Recovery	125.37							
Carbofuran	ug/L	<0.05							
Methomyl	ug/L	<0.025							
organophosphate pesticides(Total)	ug/L	<2.5							
Date of Performance	DD/MM/YY	17/08/23							
TC0067DW : Hexavalent Chro	omium								
Hexavalent Chromium	ug/L	<0.4							
Date of Performance	DD/MM/YY	17/08/23							
TC010304PW : Sample Prep	for Organics a	nalysis							
OC/PCB Preparation in Liquid Samples	N/A	Done							

	I			1				
	M231130/3							
	09/08/2023 11:27:00 AM							
	L23065260							
								-
or Organics a	nalysis(Continued)							
NI/A	Dana							
N/A	Done							
DD/MM/YY	15/08/23							
Compounds								
ug/L	<0.3							
ug/L	<0.3							
ug/L	<0.3							
ug/L	<0.4							
ug/L	<0.5							
ug/L	<0.3							
ug/L	<0.3							
ug/L	<0.3							
ug/L	<0.3							
	N/A DD/MM/YY Compounds ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	09/08/2023 11:27:00 AM L23065260 or Organics analysis(Continued) N/A Done DD/MM/YY 15/08/23 Compounds 000000000000000000000000000000000000	09/08/2023 11:27:00 AM L23065260 or Organics analysis(Continued) N/A Done DD/MM/YY 15/08/23 Compounds	09/08/2023 11:27:00 AM L23065260 Image: Continued of the second of the sec	09/08/2023 11:27:00 AM L23065260	09/08/2023 11:27:00 AM L23065260 Image: Continued N/A Done Image: Continued N/A Done Image: Continued DD/MM/YY 15/08/23 Image: Continued Compounds Image: Continued Image: Continued ug/L <0.3	0908/2023 11:27:00 AM L23065260 Image: Continued vr Organics analysis(Continued) Image: Continued N/A Done Image: Continued DD/MM/YY 15/08/23 Image: Continued DD/MM/YY 15/08/23 Image: Continued Ug/L <0.3	0908/2023 11:27:00 AM L23065260 Image: Continued or Organics analysis(Continued) Image: Continued N/A Done Image: Continued N/A Done Image: Continued D//M/YY 15/08/23 Image: Continued Ug/L Compounds Image: Continued Image: Continued ug/L Constraints Image: Continued Image: Continued Image: Continued ug/L Constraints Image: Continued Image: Continued Image: Continued Image: Continued ug/L Constraints Image: Continued Image: Continued Image: Continued Image: Continued ug/L Constraints Image: Continued Image: Continued Image: Continued Image: Continued ug/L Continued Image: Continued Image: Continued Image: Continued Image: C

			1	1	1		
Client Sample ID		M231130/3					
Sampled Date		09/08/2023 11:27:00 AM					
Sample Number		L23065260					
ORGANICS							
TC012WLL : Volatiles Organic	Compounds(Continued)					
Trichloroethene	ug/L	<0.3					
1,2-Dichloropropane	ug/L	<0.5					
Bromodichloromethane	ug/L	<0.5					
Toluene	ug/L	<0.3					
Tetrachloroethene	ug/L	<0.3					
Dibromochloromethane	ug/L	<0.5					
Chlorobenzene	ug/L	<0.3					
1,1,1,2-Tetrachloroethane	ug/L	<0.4					
Ethyl benzene	ug/L	<0.3					
(m+p)-Xylenes	ug/L	<0.4					
o-Xylene	ug/L	<0.4					
Styrene	ug/L	<0.4					

				1		
Client Sample ID		M231130/3				
Sampled Date		09/08/2023 11:27:00 AM				
Sample Number		L23065260				
ORGANICS						
TC012WLL : Volatiles Organic	Compounds(Continued)				
Bromoform	ug/L	<0.5				
1,1,2,2-Tetrachloroethane	ug/L	<0.7				
m-Dichlorobenzene	ug/L	<0.3				
p-Dichlorobenzene	ug/L	<0.5				
1,1,2-Trichloroethane	ug/L	<0.3				
o-Dichlorobenzene	ug/L	<0.3				
cis 1,2 Dichloroethene	ug/L	<0.4				
trans 1,2 Dichloroethene	ug/L	<0.3				
Total 1,2-Dicloroethene	ug/L	<0.3				
1,2,3-Trichlorobenzene	ug/L	<0.3				
Volatiles surrogate*	% Recovery	92				
1,2,4-trimethylbenzene	ug/L	<0.5				

		1		1				
Client Sample ID		M231130/3						
Sampled Date		09/08/2023 11:27:00 AM						
Sample Number		L23065260						
ORGANICS		• • •	•	•	•	•	•	
TC012WLL : Volatiles Organie	c Compounds(Continued)						
1,2,4-Trichlorobenzene	ug/L	<0.4						
2-Chlorotoluene	ug/L	<0.4						
4-Chlorotoluene	ug/L	<0.4						
Bromobenzene	ug/L	<0.5						
Hexachlorobutadiene	ug/L	<0.3						
isopropylbenzene	ug/L	<0.3						
n-Butylbenzene	ug/L	<0.3						
n-propylbenzene	ug/L	<0.3						
p-isopropyltoluene	ug/L	<0.3						
sec-Butylbenzene	ug/L	<0.3						
tert-butylbenzene	ug/L	<0.3						
1,1-Dichloropropane	ug/L	<0.3						

				-	 		
Client Sample ID		M231130/3					
Sampled Date		09/08/2023 11:27:00 AM					
Sample Number		L23065260					
ORGANICS			-		-	-	
TC012WLL : Volatiles Organic	Compounds(Continued)					
1,2,3-Trichloropropane	ug/L	<0.5					
1,3-Dichloropropane	ug/L	<0.5					
Bromochloromethane	ug/L	<0.4					
Bromomethane	ug/L	<0.4					
Chloroethane	ug/L	<0.3					
Chloromethane	ug/L	<0.4					
Dibromomethane	ug/L	<0.3					
Naphthalene	ug/L	<0.3					
Trichlorofluoromethane	ug/L	<0.3					
Dichlorodifluoromethane	ug/L	<0.3					
1,2-Dibromo-3-chloropropa ne	ug/L	<0.3					
2,2-Dichloropropane	ug/L	<0.2					

				1		l		[
Client Sample ID		M231130/3						
Sampled Date		09/08/2023 11:27:00 AM						
Sample Number		L23065260						
ORGANICS	RGANICS			•	•	•	•	
TC012WLL : Volatiles Organic	Compounds(Continued)						
cis-1,3-Dichloropropene	ug/L	<0.5						
trans-1,3-Dichloropropene	ug/L	<0.5						
1,2-dibromoethane	ug/L	<0.3						
1,3,5-trimethylbenzene	ug/L	<0.3						
1,3,5-Trichlorobenzene*	ug/L	<0.3						
Total Trihalomethanes	ug/L	<0.5						
Total tested Trichlorobenzenes*	ug/L	<0.4						
Total tested Xylenes*	ug/L	<0.4						
Date of Performance	DD/MM/YY	19/08/23						

COMMENTS

Sample ID L23065260 Comment Level Method Method Test XAL_PHNT -

<u>Comment</u> Sample analysed by ALS WO #ES2327231

Analysis Analy

Analysis Requirements

XAL_PHNT Analysed by ALS NATA Accreditation No.825

LABORATORY QC RESULTS

N/A - Not Applicable PQL - Practical Quantitation Limit LOQ - Limit of Quantification RPD - Relative Percent Difference SPIKE/Positive Control - Addition of a known amount and concentration Duplicate Precision = Accepted - Result 2 within 95% confidence limits of result 1 Duplicate Precision = Outlier - Result 2 outside 95% confidence limits of result 1 Duplicate Precision = Not calculated - Result is outside test range

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 D	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TC001WLL 4,4-DDD						
<0.01 ug/L	<0.01	95.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL 4,4-DDE			•			
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL 4,4-DDT			·			
<0.01 ug/L	<0.01	96.0	83 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC001WLL Aldrin			•			
<0.01 ug/L	<0.01	95.0	96 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC001WLL alpha-BHC			•			
<0.01 ug/L	<0.01	93.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL alpha-Chlordane			·	-		
<0.01 ug/L	<0.01	95.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 I	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC001WLL alpha-Endosulfar	1					
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL beta-BHC						
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL delta-BHC			·			
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL Dieldrin		·	•			
<0.01 ug/L	<0.01	96.0	115 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC001WLL Endrin			·			
<0.01 ug/L	<0.01	97.0	126 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC001WLL gamma-Chlordan	e		- -			
<0.01 ug/L	<0.01	95.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL Heptachlor						
<0.01 ug/L	<0.01	95.0	87 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

Sydney
WAT ER
Laboratory Services

LOQ	Blank	Control	Spike	Duplicate1 I	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC001WLL Heptachlor Epoxi	de					
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL Hexachlorobenze	ne					
<0.01 ug/L	<0.01	95.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL Lindane (gamma-	BHC)					
<0.01 ug/L	<0.01	95.0	103 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC001WLL Methoxychlor						
<0.01 ug/L	<0.01	91.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC003WLL PCB TOTAL						
<0.1 ug/L	<0.1	95.0	98.0 % Recovery	<0.5	<0.5	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
FC004WLL Acenaphthene						
<0.1 ug/L	<0.1	97.0	73.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Acenaphthylene						
<0.1 ug/L	<0.1	90.0	69.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 D	uplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC004WLL Anthracene						
<0.1 ug/L	<0.1	96.0	79.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(a)anthrace	ene					
<0.1 ug/L	<0.1	106	80.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(a)pyrene						
<0.1 ug/L	<0.1	94.0	85.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(b)fluorant	hene	·		•		
<0.1 ug/L	<0.1	96.0	83.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(e)pyrene						
<0.1 ug/L	<0.1		78.0 % Recovery	<1	<1	В
			50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(ghi)peryle	ne					
<0.1 ug/L	<0.1	87.0	71.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(k)fluoranti	hene					
<0.1 ug/L	<0.1	93.0	81.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC004WLL Chrysene						
<0.1 ug/L	<0.1	98.0	87.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Dibenzo(a,h)anth	racene					
<0.1 ug/L	<0.1	85.0	88.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Fluoranthene						
<0.1 ug/L	<0.1	95.0	66.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Fluorene				•		
<0.1 ug/L	<0.1	90.0	72.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Indeno(1,2,3-cd)p	byrene					
<0.1 ug/L	<0.1	97.0	99.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Naphthalene				·		
<0.1 ug/L	<0.1	103	70.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Perylene						
<0.1 ug/L	<0.1		77.0 % Recovery	<1	<1	В
			50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 D	uplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC004WLL Phenanthrene						
<0.1 ug/L	<0.1	95.0	81.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Pyrene			-			
<0.1 ug/L	<0.1	94.0	73.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Acephate						
<0.5 ug/L	<0.5	91.6	115.0 % Recovery	<0.5	<0.5	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Aldicarb		·				
<0.1 ug/L	<0.1	107.0	127.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Atrazine						
<0.025 ug/L	<0.025	105.0	128.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Bromophos ethyl			-			
<0.025 ug/L	<0.025	97.9	126.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Carbaryl						
<0.1 ug/L	<0.1	101.0	123.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 I	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC0056DW Carbofuran						
<0.05 ug/L	<0.5	104.0	127.0 % Recovery	<0.05	<0.05	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Chlorfenvinphos						
<0.025 ug/L	<0.025	85.6	116.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Coumaphos						
<0.025 ug/L	<0.025	95.4	111.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Demeton-S-Methy	<i>i</i> l					
<0.025 ug/L	<0.025	127.0	124.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Diazinon						
<0.025 ug/L	<0.025	94.9	115.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Dichlorvos			-			
<0.025 ug/L	<0.025	93	100 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Dimethoate						
<0.025 ug/L	<0.025	105.0	115.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			 0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 I	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC0056DW Disulfoton						
<0.1 ug/L	<0.1	105.0	120.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Diuron						
<0.1 ug/L	<0.1	98.1	123.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW E.P.N						
<0.1 ug/L	<0.1	128.0	125.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		-	0.0 - 0.0 %
TC0056DW Ethion				•		
<0.025 ug/L	<0.025	96.6	125.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Ethoprop		· · · ·				
<0.025 ug/L	<0.025	115.0	129.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Ethyl azinphos			-			
<0.1 ug/L	<0.1	84.3	112.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Ethyl chlorpyrifos						
<0.025 ug/L	<0.025	80.0	101.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC0056DW Fenamiphos						
<0.025 ug/L	<0.025	102.0	116.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Fenitrothion						
<0.1 ug/L	<0.1	102.0	123.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Fensulfothion						
<0.025 ug/L	<0.025	96.1	125.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Fenthion			-			
<0.025 ug/L	<0.025	85.3	120.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Fonofos		· · ·				
<0.025 ug/L	<0.025	117.0	126.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Hexazinone			-			
<0.1 ug/L	<0.1	93.9	129.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Isazophos						
<0.025 ug/L	<0.025	97.0	114.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Crite
TC0056DW Malathion						
<0.025 ug/L	<0.025	110.0	127.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
FC0056DW Methomyl						
<0.025 ug/L	<0.1	106.0	122.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Methyl azinphos						
<0.025 ug/L	0.160	71.3	129.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		-	0.0 - 0.0 %
TC0056DW Methyl chlorpyrifo	DS			•		
<0.025 ug/L	<0.025	90.2	118.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW metsulfuron-meth	yl					
<0.1 ug/L	<0.1	98.0	126.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Mevinphos						
<0.025 ug/L	<0.025	87.7	113.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Molinate						
<0.025 ug/L	<0.025	126.0	126.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC0056DW Monocrotophos						
<0.025 ug/L	<0.025	104.0	128.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Parathion						
<0.025 ug/L	<0.025	98.5	127.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Parathion Methyl						
<0.025 ug/L	<0.025	98.1	109.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Phorate		·				
<0.1 ug/L	<0.1	93.5	119.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Phospholan						
<0.025 ug/L	<0.025	109.0	127.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Pirimiphos Ethyl						
<0.025 ug/L	<0.025	109.0	123.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Pirimiphos methy	1					
<0.025 ug/L	<0.025	105.0	114.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			 0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC0056DW Propazine						
<0.025 ug/L	<0.025	109.0	125.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Propiconazole						
<0.025 ug/L	<0.025	102.0	128.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Prothiofos						
<0.05 ug/L	<0.05	83.4	119.0 % Recovery	<0.05	<0.05	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Simazine				•		
<0.025 ug/L	<0.025	72.2	96.5 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Sulfotep						
<0.025 ug/L	<0.025	90.6	125.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Temephos						
<1 ug/L	<1	90.0	108.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Tetrachlorvinphos	3					
<0.025 ug/L	<0.025	80.5	126.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			 0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC0056DW Trithion						
<0.1 ug/L	<0.1	94.5	124.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0067DW Hexavalent Chro	mium					
<0.4 ug/L	<0.4	100	100 % Recovery	<0.4	<0.4	В
		80.0 - 120.0 ug/L	- % Recovery			0.0 - 0.0 %
TC012WLL (m+p)-Xylenes						
<0.4 ug/L	<0.4	115	128 % Recovery	7	6	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL 1,1,1,2-Tetrachlor	oethane		-			
<0.4 ug/L	<0.4		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL 1,1,1-Trichloroeth	nane					
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL 1,1,2,2-Tetrachlor	oethane			•		
<0.7 ug/L	<0.7		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL 1,1,2-Trichloroeth	nane					
<0.3 ug/L	<0.3		E	<2	<2	В
						0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria		Acceptance Criteri
TC012WLL 1,1-Dichloroetha	ne				
<0.4 ug/L	<0.4		E	<2 <2	В
					0.0 - 0.0 %
TC012WLL 1,1-Dichloroethe	ne				
<0.3 ug/L	<0.3		E	<3 <3	В
					0.0 - 0.0 %
TC012WLL 1,1-Dichloroprop	oane	·	•		
<0.3 ug/L F	F		E	<2 <2	В
					0.0 - 0.0 %
TC012WLL 1,2,3-Trichlorobe	enzene		•		
<0.3 ug/L	<0.3		E	<2 <2	В
					0.0 - 0.0 %
TC012WLL 1,2,3-Trichloropr	opane				
<0.5 ug/L	F		E	<3 <3	В
					0.0 - 0.0 %
TC012WLL 1,2,4-Trichlorobe	enzene	·	•	•	
<0.4 ug/L	<0.4		E	<2 <2	В
					0.0 - 0.0 %
TC012WLL 1,2,4-trimethylbe	enzene	•	•	•	
<0.5 ug/L	F		E	13 12	В
					0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria		Acceptance Criter
ГС012WLL 1,2-Dibromo-3-с	hloropropane				
<0.3 ug/L	F		E	<3 <3	В
					0.0 - 0.0 %
FC012WLL 1,2-dibromoetha	ne				
<0.3 ug/L	F		E	<3 <3	В
					0.0 - 0.0 %
FC012WLL 1,2-Dichloroetha	ne	•	•		
<0.3 ug/L	<0.3		E	<2 <2	В
				,,	0.0 - 0.0 %
FC012WLL 1,2-Dichloroprop	oane				
<0.5 ug/L	<0.5		E	<2 <2	В
					0.0 - 0.0 %
FC012WLL 1,3,5-Trichlorobe	enzene				
<0.3 ug/L	F		E	<2 <2	В
					0.0 - 0.0 %
ГC012WLL 1,3,5-trimethylbe	enzene	·	•		
<0.3 ug/L	F		E	<2 <2	В
					0.0 - 0.0 %
FC012WLL 1,3-Dichloroprop	bane	•	•		
<0.5 ug/L	F		E	<2 <2	В
					0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 [Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
FC012WLL 2,2-Dichloropr	opane					
<0.2 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
C012WLL 2-Chlorotoluer	le					
<0.4 ug/L	<0.4		E	<2	<2	В
						0.0 - 0.0 %
C012WLL 4-Chlorotoluer	le	·	·	•		
<0.4 ug/L	<0.4		E	<1	<1	В
						0.0 - 0.0 %
C012WLL Benzene			- -			
<0.3 ug/L	<0.3	125	129 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C012WLL Bromobenzene)	· · ·				
<0.5 ug/L	<0.5		E	<2	<2	В
						0.0 - 0.0 %
C012WLL Bromochlorom	nethane					
<0.4 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %
C012WLL Bromodichloro	omethane					
<0.5 ug/L	<0.5	124	125 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 D	uplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC012WLL Bromoform						
<0.5 ug/L	<0.5	114	118 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Bromomethane						
<0.4 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL Carbon Tetrachlo	oride					
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Chlorobenzene		·				
<0.3 ug/L	<0.3	128	129 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Chloroethane						
<0.3 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Chloroform		·	·			
<0.5 ug/L	<0.5	125	129 % Recovery	10	11	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Chloromethane						
<0.4 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 D	uplicate2	RPD
Low	Bidink	Acceptance Criteria	Acceptance Criteria		aphoatoz	Acceptance Criteria
TC012WLL cis 1,2 Dichloro	ethene		Acceptance Chilena			Acceptance Chiena
<0.4 ug/L	<0.4		E	<1	<1	В
<0.4 ug/∟	~0.4		E			 0.0 - 0.0 %
						0.0 - 0.0 %
TC012WLL cis-1,3-Dichloro	propene					
<0.5 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Dibromochloro	nethane			·		
<0.5 ug/L	<0.5	116	124 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Dichlorodifluor	omethane					
<0.3 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Ethyl benzene						
<0.3 ug/L	<0.3	128	127 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Hexachlorobuta	diene					
<0.3 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL isopropylbenze	ne					
<0.3 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 D	uplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Crite
TC012WLL m-Dichlorobenze	ene					
<0.3 ug/L	<0.3	111	123 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Methylene Chlor	ide					
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Naphthalene		· · ·	_			
<0.3 ug/L	F		E	3	3	В
						0.0 - 0.0 %
TC012WLL n-Butylbenzene						
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
FC012WLL n-propylbenzene)	·				
<0.3 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %
FC012WLL o-Dichlorobenze	ne			•		
<0.3 ug/L	<0.3	125	124 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL o-Xylene						
<0.4 ug/L	<0.4	118	125 % Recovery	4	4	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1 Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC012WLL p-Dichlorobenze	ne					
<0.5 ug/L	<0.5	105	107 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL p-isopropyltolue	ne					
<0.3 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL sec-Butylbenzen	e					
<0.3 ug/L	<0.3		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL Styrene			•			
<0.4 ug/L	<0.4	113	117 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL tert-butylbenzen	9					
<0.3 ug/L	F		E	<1	<1	В
						0.0 - 0.0 %
TC012WLL Tetrachloroethen	e					
<0.3 ug/L	<0.3		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL Toluene						
<0.3 ug/L	<0.3	117	128 % Recovery	5	5	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

LOQ	Blank	Control Acceptance Criteria	Spike Acceptance Criteria	Duplicate1	Duplicate2	RPD Acceptance Criteria
TC012WLL Total 1,2-Diclore	oethene	Acceptance Ontena	Acceptance Ontena			Acceptance Ontena
<0.3 ug/L	F		E	<3	<3	В
TC012WLL Total tested Trie	chlorobenzenes					
<0.4 ug/L	F		E	<0.4	<0.4	В
						0.0 - 0.0 %
TC012WLL Total tested Xyl	enes			_		
<0.4 ug/L	F		E	<0.4	<0.4	В
						0.0 - 0.0 %
TC012WLL Total Trihalome	thanes					
<0.5 ug/L	F		E	<0.5	<0.5	В
						0.0 - 0.0 %
TC012WLL trans 1,2 Dichlo	proethene					
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL trans-1,3-Dichlo	propropene					
<0.5 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Trichloroethene	;					
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TC012WLL Trichlorofluorom	ethane					
<0.3 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Vinyl Chloride						
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Volatiles surroga	ite	•				
	F		E	100	100	0.00 %
					-	0.0 - 30.0 %
TM01TU Total Mercury						
<0.01 ug/L	<0.01	0.50	104 % Recovery	<0.01	<0.01	В
		0.4 - 0.6 ug/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Aluminium		•				
<0.01 mg/L	<0.01	8.88	100 % Recovery	0.178	0.193	8.09 %
		8.2 - 11.8 mg/L	80.0 - 120.0 % Recovery			0.0 - 50.0 %
TM70TW Total Arsenic		·	·			
<0.02 mg/L	<0.02	1.77	92 % Recovery	<0.02	<0.02	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Barium						
<0.002 mg/L	<0.002	1.92	99 % Recovery	0.047	0.048	2.11 %
		1.6 - 2.4 mg/L	80.0 - 120.0 % Recovery			 0.0 - 20.0 %

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criter
TM70TW Total Cadmium						
<0.005 mg/L	<0.005	1.91	98 % Recovery	<0.005	<0.005	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Calcium						
<0.01 mg/L	<0.01	46.4	95 % Recovery	16.8	16.9	0.59 %
		40.0 - 60.0 mg/L	80.0 - 120.0 % Recovery			0.0 - 20.0 %
TM70TW Total Chromium						
<0.005 mg/L	<0.005	1.86	96 % Recovery	<0.005	<0.005	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Cobalt						
<0.005 mg/L	<0.005	1.93	100 % Recovery	<0.005	<0.005	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
FM70TW Total Copper						
<0.005 mg/L	<0.005	1.77	95 % Recovery	0.015	0.015	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Iron						
<0.01 mg/L	<0.01	9.72	101 % Recovery	0.619	0.653	5.35 %
		8.0 - 12.0 mg/L	80.0 - 120.0 % Recovery			0.0 - 20.0 %
TM70TW Total Lead						
<0.01 mg/L	<0.01	1.91	97 % Recovery	<0.01	<0.01	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %

40.0 - 60.0 mg/L 80.0 - 120.0 % Recovery	Acceptance Criter 8.97 0.22 % 0.0 - 20.0 % 0.031 0.00 % 0.0 - 20.0 %
<0.02 mg/L <0.02 49.7 101 % Recovery 8.95 40.0 - 60.0 mg/L 80.0 - 120.0 % Recovery 80.0 - 120.0 % Recovery 80.0 - 120.0 % Recovery TM70TW Total Manganese 1.9 98 % Recovery 0.031 1 1.65 - 2.35 mg/L 80.0 - 120.0 % Recovery 0.031 1 TM70TW Total Potassium 1 1 1 1 1	0.0 - 20.0 % 0.031 0.00 %
40.0 - 60.0 mg/L 80.0 - 120.0 % Recovery TM70TW Total Manganese	0.0 - 20.0 % 0.031 0.00 %
Constraint Second	0.031 0.00 %
<0.001 mg/L <0.001 1.9 98 % Recovery 0.031 1.65 - 2.35 mg/L 80.0 - 120.0 % Recovery 0.031	
1.65 - 2.35 mg/L 80.0 - 120.0 % Recovery	
TM70TW Total Potassium	0.0 - 20.0 %
<0.1 mg/L <0.1 9.21 90 % Recovery 8.14	
	8.15 0.12 %
8.0 - 12.0 mg/L 80.0 - 120.0 % Recovery	0.0 - 20.0 %
TM70TW Total Sodium	
<0.05 mg/L <0.05 47.0 84 % Recovery 76.9	76.8 0.13 %
40.0 - 60.0 mg/L 80.0 - 120.0 % Recovery	0.0 - 20.0 %
TM70TW Total Zinc	
<0.01 mg/L <0.01 1.96 100 % Recovery <0.01	<0.01 B
1.6 - 2.4 mg/L 80.0 - 120.0 % Recovery	0.0 - 0.0 %
WC26NS Oil & Grease	
<3 mg/L <3 88 E	
85.1 - 101.5 mg/L	
WC26NS Pet H/C	
<3 mg/L F E	т
	·

Extra Note:

F: Blank is not applicable for this analyte T: Duplicate is not applicable for this analyte E: Spike is not applicable for this analyte DUPLICATE 4.4-DDD B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 4.4-DDE B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 4,4-DDT B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Aldrin B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE alpha-BHC B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE alpha-Chlordane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE alpha-Endosulfan B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE beta-BHC B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE delta-BHC B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Dieldrin B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Endrin B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE gamma-Chlordane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Heptachlor B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Heptachlor Epoxide B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Hexachlorobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Lindane (gamma-BHC) B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Methoxychlor B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE PCB TOTAL B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Acenaphthene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Acenaphthylene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Anthracene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Benzo(a)anthracene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Benzo(a)pyrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Benzo(b)fluoranthene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Benzo(e)pyrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Benzo(ghi)perylene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Benzo(k)fluoranthene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Chrysene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Dibenzo(a,h)anthracene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Fluoranthene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Fluorene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ

DUPLICATE Indeno(1,2,3-cd)pyrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Naphthalene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Pervlene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Phenanthrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Pyrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Acephate B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Aldicarb B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Atrazine B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Bromophos ethyl B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Carbary B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Carbofuran B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Chlorfenvinphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Coumaphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Demeton-S-Methyl B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Diazinon B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Dichlorvos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Dimethoate B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Disulfoton B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Diuron B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE E.P.N B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Ethion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Ethoprop B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Ethyl azinphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Ethyl chlorpyrifos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Fenamiphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Fenitrothion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Fensulfothion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Fenthion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Fonofos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Hexazinone B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Isazophos **DUPLICATE** Malathion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Methomy B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Methyl azinphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Methyl chlorpyrifos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ

DUPLICATE metsulfuron-methyl B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Mevinphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Molinate B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Monocrotophos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Parathion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Parathion Methyl B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Phorate B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Phospholan B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Pirimiphos Ethyl B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Pirimiphos methyl B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Propazine B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Propiconazole B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Prothiofos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Simazine B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Sulfotep B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Temephos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Tetrachlorvinphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Trithion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Hexavalent Chromium B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE (m+p)-Xylenes B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,1,1,2-Tetrachloroethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,1,1-Trichloroethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,1,2,2-Tetrachloroethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,1,2-Trichloroethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE 1.1-Dichloroethane** B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1.1-Dichloroethene DUPLICATE 1,1-Dichloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,2,3-Trichlorobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,2,3-Trichloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1.2.4-Trichlorobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,2,4-trimethylbenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,2-Dibromo-3-chloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,2-dibromoethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,2-Dichloroethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,2-Dichloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ

DUPLICATE 1,3,5-Trichlorobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1,3,5-trimethylbenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 1.3-Dichloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 2.2-Dichloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 2-Chlorotoluene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE 4-Chlorotoluene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Benzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Bromobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Bromochloromethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Bromodichloromethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Bromoform B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Bromomethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Carbon Tetrachloride B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Chlorobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Chloroethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Chloroform B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Chloromethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE cis 1,2 Dichloroethene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE cis-1,3-Dichloropropene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Dibromochloromethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Dichlorodifluoromethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Ethyl benzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Hexachlorobutadiene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE isopropylbenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE m-Dichlorobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Methylene Chloride B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Naphthalene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE n-Butylbenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE n-propylbenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE o-Dichlorobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE o-Xvlene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE p-Dichlorobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE p-isopropyltoluene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE sec-Butylbenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Styrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ

DUPLICATE tert-butylbenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Tetrachloroethene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Toluene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Total 1.2-Dicloroethene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Total tested Trichlorobenzenes B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total tested Xylenes B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Trihalomethanes B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE trans 1.2 Dichloroethene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE trans-1.3-Dichloropropene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Trichloroethene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Trichlorofluoromethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Vinyl Chloride B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Mercury B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Total Arsenic B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Cadmium B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Chromium B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Cobalt B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Copper B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Lead B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Total Zinc B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Pet H/C T: Duplicate is not applicable for this analyte