

Corporate Accreditation No 63 Accredited for compliance with ISO/IEC 17025 - Testing

Delivery Address: Sydney Water Corporation

PO Box 482, Taree NSW 2430

51 Hermitage Rd

West Ryde NSW 2114

Telephone: (02) 9800 6935

02 6591 7563

Address:

Telephone:

Email: analyticalservices@sydneywater.com.au

Analytical Report 290107

Issue Date: 26/08/2023

Issued By: Sydney Water Laboratory Services

Attention: Walter Chitsike

Customer: Midcoast Environmental Laboratory

 Customer ID:
 ZFEL

 Email:
 Walter.Chitsike@MidCoast.nsw.gov.au

CONTENTS

1. Sydney Water Approved Signatory

- 2. Sample Summary
- 3. Analytical results
- 4. Comments
- 5. Laboratory QC results

Sydney Water Approved Signatory

Abhilasha Bhandari, Organics Analyst

Jeya Gajendran, Clean & Waste Water Analyst David Choueifati, Metals Laboratory Supervisor

Justice Esoun-Nyarkoh, Organics Analyst

Adam Mtashar, Metals Analyst

Where a result is required to meet a compliance limit or specification the associated uncertainty must be considered. Uncertainty estimates are available for all accredited test results.

SAMPLE SUMMARY

<u>Client</u> Sample ID	<u>Sample</u> <u>Number</u>	Sampling Procedure	<u>Date</u> Sampled	<u>Date</u> <u>Received</u>	<u>Date</u> <u>Authorised</u>	Description
M231131/1	L23065257	1	09/08/2023	11/08/2023	25/08/2023	MB:01 (EW)
M231131/2	L23065258	1	09/08/2023	11/08/2023	25/08/2023	MB:02 (EW)
M231131/3	L23065259	1	09/08/2023	11/08/2023	25/08/2023	LP:01 (EW)

Sampling procedures

- 1 Samples analysed as received.
- 2 Samples collected as per FS procedures SAWI 070, Excluding Oil & Grease which is collected as per clients instructions.
- 3 Samples collected as per FS procedures SAWI 070.
- 4 Results reported as received from WNSW.

ANALYTICAL RESULTS

Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
CHEMISTRY							
WC26NS : Oil & Grease							
Oil & Grease	mg/L	<3	<3	<3			
Pet H/C	mg/L	<3	<3	<3			
Date of Performance	DD/MM/YY	15/08/23	15/08/23	15/08/23			
EXTERNAL TESTING							
XAL_PHNT : Total Phenolics a	analysed by AL	_S					
Courier*	N/A	TNT - Road	TNT - Road	TNT - Road			
Total Phenolics	mg/L	<0.05	<0.05	<0.05			
METALS							
TM01TU : Mercury by CV-AFS	S						
		,					
Total Mercury	ug/L	0.02	0.31	0.01	 		
Date of Performance	DD/MM/YY	17/08/23	17/08/23	17/08/23			
TM70SDT : Single digestion for	or Metals						

^{*} Indicates NATA accreditation does not cover the performance of this service

[&]quot;-" = Not required or refer to Laboratory comment

				Г				
Client Sample ID		M231131/1	M231131/2	M231131/3				
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM				
Sample Number		L23065257	L23065258	L23065259				
METALS								
TM70SDT : Single digestion f	or Metals(Cont	inued)						
Total Digestion	DONE	Done	Done	Done				
Date of Performance	DD/MM/YY	16/08/23	16/08/23	16/08/23				
TM70TW : Metals by ICPAES).							
Total Aluminium	mg/L	0.04	5.83	0.34		Ι	I	1
Total Aluminum	IIIg/L	0.04	5.05	0.54				
Total Arsenic	mg/L	<0.02	0.06	<0.02				
Total Barium	mg/L	0.220	0.668	0.290				
Total Cadmium	mg/L	<0.005	<0.005	<0.005				
Total Calcium	mg/L	191	58.0	82.3				
Total Chromium	mg/L	<0.005	0.021	<0.005				
Total Cobalt	mg/L	0.059	0.139	<0.005				
Total Copper	mg/L	0.007	0.159	<0.005	 			
Total Iron	mg/L	0.99	53.2	1.65				

^{*} Indicates NATA accreditation does not cover the performance of this service

					,		
Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
METALS					•		
TM70TW : Metals by ICPAE	S.(Continued)						
Total Lead	mg/L	0.01	0.01	<0.01			
Total Magnesium	mg/L	224	289	42.2			
Total Manganese	mg/L	0.470	6.74	0.299			
Total Potassium	mg/L	23.1	9.20	30.0			
Total Sodium	mg/L	646	1720	105			
Total Zinc	mg/L	0.01	0.13	0.01			
Date of Performance	DD/MM/YY	16/08/23	16/08/23	16/08/23			
ORGANICS							
TC001WLL : Organochlorine	e Pesticides						
Hexachlorobenzene	ug/L	<0.01	<0.01	<0.01			
alpha-BHC	ug/L	<0.01	<0.01	<0.01			
Lindane (gamma-BHC)	ug/L	<0.01	<0.01	<0.01			

^{*} Indicates NATA accreditation does not cover the performance of this service

Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS						•	
TC001WLL : Organochlorin	e Pesticides(Cor	ntinued)					
Heptachlor	ug/L	<0.01	<0.01	<0.01			
Aldrin	ug/L	<0.01	<0.01	<0.01			
beta-BHC	ug/L	<0.01	<0.01	<0.01			
delta-BHC	ug/L	<0.01	<0.01	<0.01			
Heptachlor Epoxide	ug/L	<0.01	<0.01	<0.01			
alpha-Endosulfan	ug/L	<0.01	<0.01	<0.01			
gamma-Chlordane	ug/L	<0.01	<0.01	<0.01			
alpha-Chlordane	ug/L	<0.01	<0.01	<0.01			
4,4-DDE	ug/L	<0.01	<0.01	<0.01			
Dieldrin	ug/L	<0.01	<0.01	<0.01			
Endrin	ug/L	<0.01	<0.01	<0.01			
4,4-DDD	ug/L	<0.01	<0.01	<0.01			

^{*} Indicates NATA accreditation does not cover the performance of this service

Client Sample ID		M231131/1	M231131/2	M231131/3				
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM				
Sample Number		L23065257	L23065258	L23065259				
ORGANICS	•				•	•	•	•
TC001WLL : Organochlori	ne Pesticides(Con	tinued)						
beta-Endosulfan	ug/L	<0.01	<0.01	<0.01				
4,4-DDT	ug/L	<0.01	<0.01	<0.01				
Methoxychlor	ug/L	<0.01	<0.01	<0.01				
Endosulfan Sulphate	ug/L	<0.01	<0.01	<0.01				
Total Chlordane	ug/L	<0.01	<0.01	<0.01				
OC surrogate*	% Recovery	57	62	54				
Aldrin + Dieldrin*	ug/L	<0.01	<0.01	<0.01				
Endrin aldehyde*	ug/L	<0.01	<0.01	<0.01				
Endrin ketone*	ug/L	<0.01	<0.01	<0.01	 			
Total Tested DDT*	ug/L	<0.01	<0.01	<0.01				
Date of Performance	DD/MM/YY	15/08/23	15/08/23	15/08/23				

^{*} Indicates NATA accreditation does not cover the performance of this service

		ı		Γ	1		1	ı
Client Sample ID		M231131/1	M231131/2	M231131/3				
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM				
Sample Number		L23065257	L23065258	L23065259				
ORGANICS					-			-
TC003WLL : Polychlorinated	Biphenyls (PCE	3s)(Continued)						
PCB TOTAL	ug/L	<0.1	<0.1	<0.1				
PCB surrogate*	% Recovery	73	74	60				
Date of Performance	DD/MM/YY	15/08/23	15/08/23	15/08/23				
TC004WLL : Polynuclear Arc	matic Hydrocar	bons						
					1	1	1	1
Naphthalene	ug/L	<0.1	<0.1	<0.1				
Acenaphthene	ug/L	<0.1	<0.1	<0.1				
Fluorene	ug/L	<0.1	<0.1	<0.1				
Phenanthrene	ug/L	<0.1	<0.1	<0.1				
Anthracene	ug/L	<0.1	<0.1	<0.1				
Fluoranthene	ug/L	<0.1	<0.1	<0.1				
Pyrene	ug/L	<0.1	<0.1	<0.1				
Benzo(a)anthracene	ug/L	<0.1	<0.1	<0.1				

^{*} Indicates NATA accreditation does not cover the performance of this service

01:		M024424/4	NA004404/0	M224424/2			
Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS						-	
TC004WLL : Polynuclear Aro	matic Hydrocar	bons(Continued)					
Chrysene	ug/L	<0.1	<0.1	<0.1			
Benzo(b)fluoranthene	ug/L	<0.1	<0.1	<0.1			
Benzo(k)fluoranthene	ug/L	<0.1	<0.1	<0.1			
Benzo(e)pyrene	ug/L	<0.1	<0.1	<0.1			
Benzo(a)pyrene	ug/L	<0.1	<0.1	<0.1			
Indeno(1,2,3-cd)pyrene	ug/L	<0.1	<0.1	<0.1			
Dibenzo(a,h)anthracene	ug/L	<0.1	<0.1	<0.1			
Benzo(ghi)perylene	ug/L	<0.1	<0.1	<0.1			
Total Detectable TDPAH	ug/L	<0.1	<0.1	<0.1			
PAH surrogate*	% Recovery	78.50	82.71	78.63			
Benzo(a)pyrene TEQ	ug/L	<0.1	<0.1	<0.1			
Acenaphthylene	ug/L	<0.1	<0.1	<0.1			

^{*} Indicates NATA accreditation does not cover the performance of this service

Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS							
TC004WLL : Polynuclear Aro	matic Hydrocar	bons(Continued)					
Perylene	ug/L	<0.1	<0.1	<0.1			
Date of Performance	DD/MM/YY	16/08/23	16/08/23	16/08/23			
TC0056DW : Multi-Residue F	esticide Analys	sis by UPLCMSMS					
Dichlorvos	ug/L	<0.025	<0.025	<0.025			
Mevinphos	ug/L	<0.025	<0.025	<0.025			
Ethoprop	ug/L	<0.025	<0.025	<0.025			
Demeton-S-Methyl	ug/L	<0.025	<0.025	<0.025			
Diazinon	ug/L	<0.025	<0.025	<0.025			
Fonofos	ug/L	<0.025	<0.025	<0.025			
Isazophos	ug/L	<0.025	<0.025	<0.025			
Dimethoate	ug/L	<0.025	<0.025	<0.025			
Methyl chlorpyrifos	ug/L	<0.025	<0.025	<0.025	 		

^{*} Indicates NATA accreditation does not cover the performance of this service

		T T		Т	T	T	1	T
Client Sample ID		M231131/1	M231131/2	M231131/3				
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM				
Sample Number		L23065257	L23065258	L23065259				
ORGANICS				-	•			-
TC0056DW : Multi-Residue	Pesticide Analys	sis by UPLCMSMS(C	Continued)					
Ethyl chlorpyrifos	ug/L	<0.025	<0.025	<0.025				
Malathion	ug/L	<0.025	<0.025	<0.025				
Fenthion	ug/L	<0.025	<0.025	<0.025				
Fenitrothion	ug/L	<0.1	<0.1	<0.1				
Parathion	ug/L	<0.025	<0.025	<0.025				
Phospholan	ug/L	<0.025	<0.025	<0.025				
Fensulfothion	ug/L	<0.025	<0.025	<0.025				
E.P.N	ug/L	<0.1	<0.1	<0.1				
Methyl azinphos	ug/L	<0.025	<0.025	<0.025				
Ethyl azinphos	ug/L	<0.1	<0.1	<0.1				
metsulfuron-methyl	ug/L	<0.1	<0.1	<0.1				
Molinate	ug/L	<0.025	<0.025	<0.025				

^{*} Indicates NATA accreditation does not cover the performance of this service

Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS							
TC0056DW : Multi-Residue	Pesticide Analys	sis by UPLCMSMS(C	Continued)				
Atrazine	ug/L	<0.025	<0.025	<0.025			
Chlorfenvinphos	ug/L	<0.025	<0.025	<0.025			
Pirimiphos methyl	ug/L	<0.025	<0.025	<0.025			
Propiconazole	ug/L	<0.025	<0.025	<0.025			
Simazine	ug/L	<0.025	<0.025	<0.025			
Bromophos ethyl	ug/L	<0.025	<0.025	<0.025			
Coumaphos	ug/L	<0.025	<0.025	<0.025			
Ethion	ug/L	<0.025	<0.025	<0.025			
Fenamiphos	ug/L	<0.025	<0.025	<0.025			
Monocrotophos	ug/L	<0.025	<0.025	<0.025			
Parathion Methyl	ug/L	<0.025	<0.025	<0.025			
Prothiofos	ug/L	<0.05	<0.05	<0.05			

^{*} Indicates NATA accreditation does not cover the performance of this service

		1				1	
Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS						•	
TC0056DW : Multi-Residue	Pesticide Analys	sis by UPLCMSMS(C	Continued)				
Sulfotep	ug/L	<0.025	<0.025	<0.025			
Pirimiphos Ethyl	ug/L	<0.025	<0.025	<0.025			
Tetrachlorvinphos	ug/L	<0.025	<0.025	<0.025			
Propazine	ug/L	<0.025	<0.025	<0.025			
Trithion	ug/L	<0.1	<0.1	<0.1			
Diuron	ug/L	<0.1	<0.1	<0.1			
Hexazinone	ug/L	<0.1	0.1	0.5			
Temephos	ug/L	<1	<1	<1			
Carbaryl	ug/L	<0.1	<0.1	<0.1			
Disulfoton	ug/L	<0.1	<0.1	<0.1			
Phorate	ug/L	<0.1	<0.1	<0.1			
Acephate	ug/L	<0.5	<0.5	<0.5			

^{*} Indicates NATA accreditation does not cover the performance of this service

Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS							
TC0056DW : Multi-Residue P	esticide Analys	sis by UPLCMSMS(C	Continued)				
Aldicarb	ug/L	<0.1	<0.1	<0.1			
OP surrogate*	% Recovery	124.42	102.95	99.01			
Carbofuran	ug/L	<0.05	<0.05	<0.05			
Methomyl	ug/L	<0.025	<0.025	<0.025			
organophosphate pesticides(Total)	ug/L	<2.5	<2.5	<2.5			
Date of Performance	DD/MM/YY	17/08/23	17/08/23	17/08/23			
TC0067DW : Hexavalent Chro	omium						
Hexavalent Chromium	ug/L	<0.4	<0.4	<0.4			
Date of Performance	DD/MM/YY	17/08/23	17/08/23	17/08/23			
TC010304PW : Sample Prep	for Organics a	nalysis					
OC/PCB Preparation in Liquid Samples	N/A	Done	Done	Done	 	 	

^{*} Indicates NATA accreditation does not cover the performance of this service

	т т				T	1	1	1
	M231131/1	M231131/2	M231131/3					
	09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM					
	L23065257	L23065258	L23065259					
					-			
or Organics a	nalysis(Continued)							
N/A	Done	Done	Done					
DD/MM/YY	15/08/23	15/08/23	15/08/23					
Compounds								
ug/L	<0.3	<0.3	<0.3					
ug/L	<0.3	<0.3	<0.3					
ug/L	<0.3	<0.3	<0.3					
ug/L	<0.4	<0.4	<0.4					
ug/L	<0.5	<0.5	<0.5					
ug/L	<0.3	<0.3	<0.3					
ug/L	<0.3	<0.3	<0.3					
ug/L	<0.3	<0.3	<0.3					
ug/L	<0.3	<0.3	<0.3					
	N/A DD/MM/YY Compounds ug/L ug/L	09/08/2023 08:45:00 AM L23065257 Or Organics analysis(Continued) N/A Done DD/MM/YY 15/08/23 Compounds	09/08/2023 08:45:00 AM L23065257 09/08/2023 09:20:00 AM L23065258 Or Organics analysis(Continued) N/A Done Done DD/MM/YY 15/08/23 15/08/23 Compounds 40.3 40.3 ug/L 40.3 40.3 ug/L 40.4 40.4 ug/L 40.5 40.5 ug/L 40.3 40.3 ug/L 40.3 40.3	09/08/2023 09/08/2023 09/08/2023 09:40:00 AM L23065257 L23065258 L23065259	09/08/2023 09/08/2023 09/08/2023 09/08/2023 09:40:00 AM 09:40:00 AM 123065257 123065258 123065259 12306525	09/08/2023 09/08/2023 09/08/2023 09/08/2023 09:40:00 AM L23065257 L23065258 L23065259	09/08/2023 09/08/2023 09/08/2023 09/08/2023 09/08/2023 09/08/2023 09/08/2023 09/08/2023 09/08/2023 09/08/200 AM L23065259	09/08/2023 09/

^{*} Indicates NATA accreditation does not cover the performance of this service

011 10 1 10		1400440444	14004404/0	14004404/0			
Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS							
TC012WLL : Volatiles Organic	Compounds(Continued)					
Trichloroethene	ug/L	<0.3	<0.3	<0.3			
1,2-Dichloropropane	ug/L	<0.5	<0.5	<0.5			
Bromodichloromethane	ug/L	<0.5	<0.5	<0.5			
Toluene	ug/L	<0.3	<0.3	<0.3			
Tetrachloroethene	ug/L	<0.3	<0.3	<0.3			
Dibromochloromethane	ug/L	<0.5	<0.5	<0.5			
Chlorobenzene	ug/L	<0.3	<0.3	<0.3			
1,1,1,2-Tetrachloroethane	ug/L	<0.4	<0.4	<0.4			
Ethyl benzene	ug/L	<0.3	<0.3	<0.3			
(m+p)-Xylenes	ug/L	<0.4	<0.4	<0.4		 	
o-Xylene	ug/L	<0.4	<0.4	<0.4			
Styrene	ug/L	<0.4	<0.4	<0.4			

^{*} Indicates NATA accreditation does not cover the performance of this service

				Γ	T	ı			Γ
Client Sample ID		M231131/1	M231131/2	M231131/3					
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM					
Sample Number		L23065257	L23065258	L23065259					
ORGANICS									
TC012WLL : Volatiles Organic	c Compounds(0	Continued)							
						I	1	1	
Bromoform	ug/L	<0.5	<0.5	<0.5					
1,1,2,2-Tetrachloroethane	ug/L	<0.7	<0.7	<0.7					
m-Dichlorobenzene	ug/L	<0.3	<0.3	<0.3					
p-Dichlorobenzene	ug/L	<0.5	<0.5	<0.5					
1,1,2-Trichloroethane	ug/L	<0.3	<0.3	<0.3					
o-Dichlorobenzene	ug/L	<0.3	<0.3	<0.3					
cis 1,2 Dichloroethene	ug/L	<0.4	<0.4	<0.4					
trans 1,2 Dichloroethene	ug/L	<0.3	<0.3	<0.3					
Total 1,2-Dicloroethene	ug/L	<0.3	<0.3	<0.3					
1,2,3-Trichlorobenzene	ug/L	<0.3	<0.3	<0.3					
Volatiles surrogate*	% Recovery	95	90	88					
1,2,4-trimethylbenzene	ug/L	<0.5	<0.5	<0.5					

^{*} Indicates NATA accreditation does not cover the performance of this service

Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS						•	
TC012WLL : Volatiles Organi	c Compounds(Continued)					
1,2,4-Trichlorobenzene	ug/L	<0.4	<0.4	<0.4			
2-Chlorotoluene	ug/L	<0.4	<0.4	<0.4			
4-Chlorotoluene	ug/L	<0.4	<0.4	<0.4			
Bromobenzene	ug/L	<0.5	<0.5	<0.5			
Hexachlorobutadiene	ug/L	<0.3	<0.3	<0.3			
isopropylbenzene	ug/L	<0.3	<0.3	<0.3			
n-Butylbenzene	ug/L	<0.3	<0.3	<0.3			
n-propylbenzene	ug/L	<0.3	<0.3	<0.3			
p-isopropyltoluene	ug/L	<0.3	<0.3	<0.3			
sec-Butylbenzene	ug/L	<0.3	<0.3	<0.3			
tert-butylbenzene	ug/L	<0.3	<0.3	<0.3			
1,1-Dichloropropane	ug/L	<0.3	<0.3	<0.3			

^{*} Indicates NATA accreditation does not cover the performance of this service

Client Comple ID		M231131/1	M231131/2	M231131/3			
Client Sample ID		MI231131/1	IVI231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS							
TC012WLL : Volatiles Organic	Compounds(Continued)					
1,2,3-Trichloropropane	ug/L	<0.5	<0.5	<0.5			
1,3-Dichloropropane	ug/L	<0.5	<0.5	<0.5			
Bromochloromethane	ug/L	<0.4	<0.4	<0.4			
Bromomethane	ug/L	<0.4	<0.4	<0.4			
Chloroethane	ug/L	<0.3	<0.3	<0.3			
Chloromethane	ug/L	<0.4	<0.4	<0.4			
Dibromomethane	ug/L	<0.3	<0.3	<0.3			
Naphthalene	ug/L	<0.3	<0.3	<0.3			
Trichlorofluoromethane	ug/L	<0.3	<0.3	<0.3			
Dichlorodifluoromethane	ug/L	<0.3	<0.3	<0.3		 	
1,2-Dibromo-3-chloropropa ne	ug/L	<0.3	<0.3	<0.3			
2,2-Dichloropropane	ug/L	<0.2	<0.2	<0.2			

^{*} Indicates NATA accreditation does not cover the performance of this service

		· · · · · · · · · · · · · · · · · · ·			<u> </u>	•	
Client Sample ID		M231131/1	M231131/2	M231131/3			
Sampled Date		09/08/2023 08:45:00 AM	09/08/2023 09:20:00 AM	09/08/2023 09:40:00 AM			
Sample Number		L23065257	L23065258	L23065259			
ORGANICS						-	
TC012WLL : Volatiles Organio	Compounds(Continued)					
cis-1,3-Dichloropropene	ug/L	<0.5	<0.5	<0.5			
trans-1,3-Dichloropropene	ug/L	<0.5	<0.5	<0.5			
1,2-dibromoethane	ug/L	<0.3	<0.3	<0.3			
1,3,5-trimethylbenzene	ug/L	<0.3	<0.3	<0.3			
1,3,5-Trichlorobenzene*	ug/L	<0.3	<0.3	<0.3			
Total Trihalomethanes	ug/L	<0.5	<0.5	<0.5			
Total tested Trichlorobenzenes*	ug/L	<0.4	<0.4	<0.4			
Total tested Xylenes*	ug/L	<0.4	<0.4	<0.4			
Date of Performance	DD/MM/YY	19/08/23	19/08/23	19/08/23			

COMMENTS

Sample ID
L23065257Comment Level
MethodMethod
XAL_PHNTTest
-Comment
Sample analysed by ALS WO #ES2327231L23065258MethodXAL_PHNT-Sample analysed by ALS WO #ES2327231

^{*} Indicates NATA accreditation does not cover the performance of this service

L23065259

Method

XAL_PHNT

Sample analysed by ALS WO #ES2327231

Analysis Requirements

XAL_PHNT Analysed by ALS NATA Accreditation No.825

^{*} Indicates NATA accreditation does not cover the performance of this service

LABORATORY QC RESULTS

N/A - Not Applicable

PQL - Practical Quantitation Limit LOQ - Limit of Quantification

RPD - Relative Percent Difference

SPIKE/Positive Control - Addition of a known amount and concentration

Duplicate Precision = Accepted - Result 2 within 95% confidence limits of result 1

Duplicate Precision = Outlier - Result 2 outside 95% confidence limits of result 1

Duplicate Precision = Not calculated - Result is outside test range

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 D)uplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TC001WLL 4,4-DDD						
<0.01 ug/L	<0.01	95.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL 4,4-DDE						
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL 4,4-DDT						
<0.01 ug/L	<0.01	96.0	83 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC001WLL Aldrin						
<0.01 ug/L	<0.01	95.0	96 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC001WLL alpha-BHC						
<0.01 ug/L	<0.01	93.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL alpha-Chlordane						
<0.01 ug/L	<0.01	95.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 [Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteri
TC001WLL alpha-Endosulfar	1					
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
C001WLL beta-BHC						
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
C001WLL delta-BHC						
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
ΓC001WLL Dieldrin						
<0.01 ug/L	<0.01	96.0	115 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
ΓC001WLL Endrin						
<0.01 ug/L	<0.01	97.0	126 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
ГС001WLL gamma-Chlordan	е		•			
<0.01 ug/L	<0.01	95.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
ΓC001WLL Heptachlor						
<0.01 ug/L	<0.01	95.0	87 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria		·	Acceptance Criteri
TC001WLL Heptachlor Epoxi	de		<u> </u>	<u> </u>		
<0.01 ug/L	<0.01	96.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L			'	0.0 - 0.0 %
CO01WLL Hexachlorobenze	ne					
<0.01 ug/L	<0.01	95.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
TC001WLL Lindane (gamma-	ВНС)					
<0.01 ug/L	<0.01	95.0	103 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC001WLL Methoxychlor						
<0.01 ug/L	<0.01	91.0	E	<0.1	<0.1	В
		70.0 - 130.0 ug/L				0.0 - 0.0 %
C003WLL PCB TOTAL						
<0.1 ug/L	<0.1	95.0	98.0 % Recovery	<0.5	<0.5	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C004WLL Acenaphthene						
<0.1 ug/L	<0.1	97.0	76.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C004WLL Acenaphthylene						
<0.1 ug/L	<0.1	90.0	69.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 [Ouplicate2	RPD
LOQ	Diank		'	Duplicate 1	ouplicate2	
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TC004WLL Anthracene						
<0.1 ug/L	<0.1	96.0	79.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(a)anthrace	ene					
<0.1 ug/L	<0.1	106	80.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(a)pyrene						
<0.1 ug/L	<0.1	94.0	85.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(b)fluorant	hene			•		
<0.1 ug/L	<0.1	96.0	83.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(e)pyrene						
<0.1 ug/L	<0.1		80.0 % Recovery	<1	<1	В
			50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(ghi)peryle	ne					
<0.1 ug/L	<0.1	87.0	71.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Benzo(k)fluorant	hene					
<0.1 ug/L	<0.1	93.0	81.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
ΓC004WLL Chrysene						
<0.1 ug/L	<0.1	98.0	96.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C004WLL Dibenzo(a,h)anth	racene					
<0.1 ug/L	<0.1	85.0	88.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C004WLL Fluoranthene						
<0.1 ug/L	<0.1	95.0	66.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C004WLL Fluorene		•				
<0.1 ug/L	<0.1	90.0	72.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
CO04WLL Indeno(1,2,3-cd)p	yrene					
<0.1 ug/L	<0.1	97.0	99.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
ΓC004WLL Naphthalene						
<0.1 ug/L	<0.1	103	75.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C004WLL Perylene						
<0.1 ug/L	<0.1		77.0 % Recovery	<1	<1	В
			50.0 - 130.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 I	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteri
TC004WLL Phenanthrene						
<0.1 ug/L	<0.1	95.0	81.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC004WLL Pyrene						
<0.1 ug/L	<0.1	94.0	73.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Acephate						
<0.5 ug/L	<0.5	91.6	115.0 % Recovery	<0.5	<0.5	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Aldicarb		·				
<0.1 ug/L	<0.1	107.0	127.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Atrazine						
<0.025 ug/L	<0.025	105.0	128.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Bromophos ethy	l					
<0.025 ug/L	<0.025	97.9	126.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Carbaryl						
<0.1 ug/L	<0.1	101.0	123.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
		I	ı			

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 D	Ouplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TC0056DW Carbofuran						
<0.05 ug/L	<0.5	104.0	127.0 % Recovery	<0.05	<0.05	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Chlorfenvinphos						
<0.025 ug/L	<0.025	85.6	116.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Coumaphos						
<0.025 ug/L	<0.025	95.4	111.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Demeton-S-Methy	d .					
<0.025 ug/L	<0.025	127.0	124.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Diazinon						
<0.025 ug/L	<0.025	94.9	115.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Dichlorvos						
<0.025 ug/L	<0.025	93	100 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Dimethoate						
<0.025 ug/L	<0.025	105.0	115.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

100	Di i		1 0 1			DDD
LOQ	Blank	Control	Spike	Duplicate1 D	uplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TC0056DW Disulfoton						
<0.1 ug/L	<0.1	105.0	120.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Diuron						
<0.1 ug/L	<0.1	98.1	123.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW E.P.N						
<0.1 ug/L	<0.1	128.0	125.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Ethion						
<0.025 ug/L	<0.025	96.6	125.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Ethoprop						
<0.025 ug/L	<0.025	115.0	129.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Ethyl azinphos						
<0.1 ug/L	<0.1	84.3	112.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Ethyl chlorpyrifos						
<0.025 ug/L	<0.025	80.0	101.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			 0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 Duplic	ate2 RPD
		Acceptance Criteria	Acceptance Criteria		Acceptance Criteria
TC0056DW Fenamiphos		·		·	
<0.025 ug/L	<0.025	102.0	116.0 % Recovery	<0.025	<0.025 B
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
TC0056DW Fenitrothion					
<0.1 ug/L	<0.1	102.0	123.0 % Recovery	<0.1	<0.1 B
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
TC0056DW Fensulfothion					
<0.025 ug/L	<0.025	96.1	125.0 % Recovery	<0.025	<0.025 B
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
TC0056DW Fenthion		·		·	
<0.025 ug/L	<0.025	85.3	120.0 % Recovery	<0.025	<0.025 B
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
TC0056DW Fonofos					
<0.025 ug/L	<0.025	117.0	126.0 % Recovery	<0.025	<0.025 B
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
TC0056DW Hexazinone					
<0.1 ug/L	<0.1	93.9	129.0 % Recovery	<0.1	<0.1 B
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
TC0056DW Isazophos					
<0.025 ug/L	<0.025	97.0	114.0 % Recovery	<0.025	<0.025 B
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteri
TC0056DW Malathion		71000ptarioù cintoria	71000ptarioo ontona			nooplanee enten
<0.025 ug/L	<0.025	110.0	127.0 % Recovery	<0.025	<0.025	В
-		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C0056DW Methomyl		•				
<0.025 ug/L	<0.1	106.0	122.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C0056DW Methyl azinphos		·				
<0.025 ug/L	0.160	71.3	129.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C0056DW Methyl chlorpyrife	os					
<0.025 ug/L	<0.025	90.2	118.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C0056DW metsulfuron-meth	nyl					
<0.1 ug/L	<0.1	98.0	126.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C0056DW Mevinphos						
<0.025 ug/L	<0.025	87.7	113.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
CO056DW Molinate						
<0.025 ug/L	<0.025	126.0	126.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			 0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

		ı		
Blank	Control	Spike	Duplicate1 Duplic	cate2 RPD
	Acceptance Criteria	Acceptance Criteria		Acceptance Criteria
<0.025	104.0	128.0 % Recovery	<0.025	<0.025 B
	70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
<0.025	98.5	127.0 % Recovery	<0.025	<0.025 B
	70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
<0.025	98.1	109.0 % Recovery	<0.025	<0.025 B
	70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
<0.1	93.5	119.0 % Recovery	<0.1	<0.1 B
	70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
<0.025	109.0	127.0 % Recovery	<0.025	<0.025 B
	70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
<0.025	109.0	123.0 % Recovery	<0.025	<0.025 B
	70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
<0.025	105.0	114.0 % Recovery	<0.025	<0.025 B
	70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		0.0 - 0.0 %
	<0.025 <0.025 <0.025 <0.025	Acceptance Criteria	Acceptance Criteria Acceptance Criteria	Acceptance Criteria Acceptance Criteria

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 [Duplicate2	RPD
LOQ	Diam	Acceptance Criteria	Acceptance Criteria	Duplicate	Jupiloutoz	Acceptance Criteri
TC0056DW Propazine		Acceptance Cinteria	Acceptance Ontena			Acceptance Citteri
<0.025 ug/L	<0.025	109.0	125.0 % Recovery	<0.025	<0.025	В
-		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		-11	0.0 - 0.0 %
TC0056DW Propiconazole				<u> </u>		
<0.025 ug/L	<0.025	102.0	128.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Prothiofos						
<0.05 ug/L	<0.05	83.4	119.0 % Recovery	<0.05	<0.05	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Simazine		·				
<0.025 ug/L	<0.025	72.2	96.5 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Sulfotep						
<0.025 ug/L	<0.025	90.6	125.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Temephos						
<1 ug/L	<1	90.0	108.0 % Recovery	<1	<1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC0056DW Tetrachlorvinphos	3					
<0.025 ug/L	<0.025	80.5	126.0 % Recovery	<0.025	<0.025	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 I	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteri
C0056DW Trithion						
<0.1 ug/L	<0.1	94.5	124.0 % Recovery	<0.1	<0.1	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C0067DW Hexavalent Chro	nium					
<0.4 ug/L <	<0.4	100	100 % Recovery	<0.4	<0.4	В
		80.0 - 120.0 ug/L	- % Recovery			0.0 - 0.0 %
C012WLL (m+p)-Xylenes						
<0.4 ug/L	<0.4	115	128 % Recovery	7	6	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C012WLL 1,1,1,2-Tetrachlor	oethane					
<0.4 ug/L	<0.4		E	<2	<2	В
						0.0 - 0.0 %
C012WLL 1,1,1-Trichloroeth	ane					
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
C012WLL 1,1,2,2-Tetrachlor	oethane					
<0.7 ug/L	<0.7		E	<2	<2	В
						0.0 - 0.0 %
C012WLL 1,1,2-Trichloroeth	ane					
<0.3 ug/L	<0.3		E	<2	<2	В
						0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 Duplic	
TC012WLL 1,1-Dichloroethar	20	Acceptance Criteria	Acceptance Criteria		Acceptance Criteri
<0.4 ug/L	<0.4		E	<2	<2 B
					0.0 - 0.0 %
TC012WLL 1,1-Dichloroether	ne				
<0.3 ug/L	<0.3		E	<3	<3 B
					0.0 - 0.0 %
C012WLL 1,1-Dichloropropa	ane		•	•	
<0.3 ug/L	F		Е	<2	<2 B
					0.0 - 0.0 %
ΓC012WLL 1,2,3-Trichlorober	nzene			<u> </u>	
<0.3 ug/L	<0.3		E	<2	<2 B
					0.0 - 0.0 %
C012WLL 1,2,3-Trichloropro	ppane	·		•	
<0.5 ug/L	F		E	<3	<3 B
					0.0 - 0.0 %
C012WLL 1,2,4-Trichlorobe	nzene		•	•	
<0.4 ug/L	<0.4		E	<2	<2 B
					0.0 - 0.0 %
C012WLL 1,2,4-trimethylber	nzene	•		•	
<0.5 ug/L	F		Е	13	12 B
				,	0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria		Acceptance Criteri
CO12WLL 1,2-Dibromo-3-c	hloropropane				
<0.3 ug/L	F		E	<3 <3	В
					0.0 - 0.0 %
C012WLL 1,2-dibromoetha	ne				
<0.3 ug/L	F		E	<3 <3	В
					0.0 - 0.0 %
C012WLL 1,2-Dichloroetha	ne				
<0.3 ug/L	<0.3		E	<2 <2	В
					0.0 - 0.0 %
ՐC012WLL 1,2-Dichloroprop	pane		•		
<0.5 ug/L	<0.5		E	<2 <2	В
					0.0 - 0.0 %
C012WLL 1,3,5-Trichlorobe	enzene				
<0.3 ug/L	F		E	<2 <2	В
					0.0 - 0.0 %
C012WLL 1,3,5-trimethylbe	enzene			·	
<0.3 ug/L	F		E	<2 <2	В
					0.0 - 0.0 %
CO12WLL 1,3-Dichloroprop	pane			·	
<0.5 ug/L	F		E	<2 <2	В
					0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 I	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria	,	•	Acceptance Criteria
TC012WLL 2,2-Dichloropro	pane	,	,			
<0.2 ug/L	F		E	<3	<3	В
					'	0.0 - 0.0 %
TC012WLL 2-Chlorotoluene)					
<0.4 ug/L	<0.4		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL 4-Chlorotoluene)					
<0.4 ug/L	<0.4		E	<1	<1	В
						0.0 - 0.0 %
TC012WLL Benzene		·				
<0.3 ug/L	<0.3	125	129 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Bromobenzene						
<0.5 ug/L	<0.5		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL Bromochlorome	ethane			•		
<0.4 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL Bromodichloro	methane					
<0.5 ug/L	<0.5	124	125 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria		•	Acceptance Criteria
TC012WLL Bromoform		1 11/11 11 11 11				
<0.5 ug/L	<0.5	114	118 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Bromomethane						
<0.4 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL Carbon Tetrachlo	oride					
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Chlorobenzene		•				
<0.3 ug/L	<0.3	128	129 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Chloroethane						
<0.3 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Chloroform				•		
<0.5 ug/L	<0.5	125	129 % Recovery	10	11	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Chloromethane						
<0.4 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TC012WLL cis 1,2 Dichloro	ethene					
<0.4 ug/L	<0.4		E	<1	<1	В
						0.0 - 0.0 %
ΓC012WLL cis-1,3-Dichloro	propene					
<0.5 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Dibromochloror	nethane	•		•		
<0.5 ug/L	<0.5	116	124 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		'	0.0 - 0.0 %
CO12WLL Dichlorodifluoro	omethane					
<0.3 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
C012WLL Ethyl benzene						
<0.3 ug/L	<0.3	128	127 % Recovery	2	2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL Hexachlorobuta	diene					
<0.3 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL isopropylbenzei	ne					
<0.3 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 D	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria	i i	•	Acceptance Criteria
ΓC012WLL m-Dichlorobenz	ene	The second secon	, icoopiano cinono			
<0.3 ug/L	<0.3	111	123 % Recovery	<2	<2	В
-		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery		JI.	0.0 - 0.0 %
ΓC012WLL Methylene Chlor	ride	•				
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
C012WLL Naphthalene		•				
<0.3 ug/L	F		E	3	3	В
						0.0 - 0.0 %
ГС012WLL n-Butylbenzene		•				
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
CO12WLL n-propylbenzen	е					
<0.3 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %
C012WLL o-Dichlorobenze	ene					
<0.3 ug/L	<0.3	125	124 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
C012WLL o-Xylene						
<0.4 ug/L	<0.4	118	125 % Recovery	4	4	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 D	uplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TC012WLL p-Dichlorobenze	ne					
<0.5 ug/L	<0.5	105	107 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL p-isopropyltolue	ne					
<0.3 ug/L	F		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL sec-Butylbenzen	е					
<0.3 ug/L	<0.3		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL Styrene			•	•		
<0.4 ug/L	<0.4	113	117 % Recovery	<2	<2	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %
TC012WLL tert-butylbenzen	9					
<0.3 ug/L	F		E	<1	<1	В
						0.0 - 0.0 %
TC012WLL Tetrachloroethen	е					
<0.3 ug/L	<0.3		E	<2	<2	В
						0.0 - 0.0 %
TC012WLL Toluene						
<0.3 ug/L	<0.3	117	128 % Recovery	5	5	В
		70.0 - 130.0 ug/L	50.0 - 130.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 Dup	licate2 RPD	
		Acceptance Criteria	Acceptance Criteria		Acceptance (Criteria
TC012WLL Total 1,2-Diclor	oethene					
<0.3 ug/L	F		E	<3	<3 B	
TC012WLL Total tested Tric	chlorobenzenes			•		
<0.4 ug/L	F		E	<0.4	<0.4 B	
					0.0 - 0.0	0 %
TC012WLL Total tested Xyl	enes	•		•		
<0.4 ug/L	F		E	<0.4	<0.4 B	
					0.0 - 0.0	0 %
TC012WLL Total Trihalome	thanes		•	•		
<0.5 ug/L	F		E	<0.5	<0.5 B	
					0.0 - 0.0	0 %
TC012WLL trans 1,2 Dichlo	proethene	·		·		
<0.3 ug/L	<0.3		E	<3	<3 B	
					0.0 - 0.0	0 %
TC012WLL trans-1,3-Dichlo	propropene			·		
<0.5 ug/L	F		E	<3	<3 B	
					0.0 - 0.0	0 %
TC012WLL Trichloroethene	9			•		
<0.3 ug/L	<0.3		E	<3	<3 B	
					0.0 - 0.0	0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 D	Ouplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TC012WLL Trichlorofluorom	ethane					
<0.3 ug/L	F		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Vinyl Chloride						
<0.3 ug/L	<0.3		E	<3	<3	В
						0.0 - 0.0 %
TC012WLL Volatiles surroga	te					
	F		E	100	100	0.00 %
						0.0 - 30.0 %
TM01TU Total Mercury		•				
<0.01 ug/L	<0.01	0.50	104 % Recovery	<0.01	<0.01	В
		0.4 - 0.6 ug/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Aluminium						
<0.01 mg/L	<0.01	8.88	100 % Recovery	0.178	0.193	8.09 %
		8.2 - 11.8 mg/L	80.0 - 120.0 % Recovery			0.0 - 50.0 %
TM70TW Total Arsenic						
<0.02 mg/L	<0.02	1.77	92 % Recovery	<0.02	<0.02	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Barium						
<0.002 mg/L	<0.002	1.92	99 % Recovery	0.047	0.048	2.11 %
		1.6 - 2.4 mg/L	80.0 - 120.0 % Recovery		 	 0.0 - 20.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1 [Ouplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TM70TW Total Cadmium						
<0.005 mg/L	<0.005	1.91	98 % Recovery	<0.005	<0.005	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Calcium						
<0.01 mg/L	<0.01	46.4	95 % Recovery	16.8	16.9	0.59 %
		40.0 - 60.0 mg/L	80.0 - 120.0 % Recovery			0.0 - 20.0 %
TM70TW Total Chromium						
<0.005 mg/L	<0.005	1.86	96 % Recovery	<0.005	<0.005	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Cobalt						
<0.005 mg/L	<0.005	1.93	100 % Recovery	<0.005	<0.005	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Copper						
<0.005 mg/L	<0.005	1.77	95 % Recovery	0.015	0.015	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
TM70TW Total Iron						
<0.01 mg/L	<0.01	9.72	101 % Recovery	0.619	0.653	5.35 %
		8.0 - 12.0 mg/L	80.0 - 120.0 % Recovery			0.0 - 20.0 %
TM70TW Total Lead						
<0.01 mg/L	<0.01	1.91	97 % Recovery	<0.01	<0.01	В
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %

^{*} Indicates NATA accreditation does not cover the performance of this service

LOQ	Blank	Control	Spike	Duplicate1	Duplicate2	RPD
		Acceptance Criteria	Acceptance Criteria			Acceptance Criteria
TM70TW Total Magnesium				•		
<0.02 mg/L	<0.02	49.7	101 % Recovery	8.95	8.97	0.22 %
		40.0 - 60.0 mg/L	80.0 - 120.0 % Recovery			0.0 - 20.0 %
TM70TW Total Manganese						
<0.001 mg/L	<0.001	1.9	98 % Recovery	0.031	0.031	0.00 %
		1.65 - 2.35 mg/L	80.0 - 120.0 % Recovery			0.0 - 20.0 %
TM70TW Total Potassium				•		
<0.1 mg/L	<0.1	9.21	90 % Recovery	8.14	8.15	0.12 %
		8.0 - 12.0 mg/L	80.0 - 120.0 % Recovery		•	0.0 - 20.0 %
TM70TW Total Sodium						
<0.05 mg/L	<0.05	47.0	84 % Recovery	76.9	76.8	0.13 %
		40.0 - 60.0 mg/L	80.0 - 120.0 % Recovery			0.0 - 20.0 %
TM70TW Total Zinc						
<0.01 mg/L	<0.01	1.96	100 % Recovery	<0.01	<0.01	В
		1.6 - 2.4 mg/L	80.0 - 120.0 % Recovery			0.0 - 0.0 %
WC26NS Oil & Grease		·		•		
<3 mg/L	<3	88	E			
		85.1 - 101.5 mg/L				
WC26NS Pet H/C						
<3 mg/L	F		E			Т

^{*} Indicates NATA accreditation does not cover the performance of this service

Extra Note:

- F: Blank is not applicable for this analyte
- T: Duplicate is not applicable for this analyte
- E: Spike is not applicable for this analyte
- **DUPLICATE 4.4-DDD** B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE 4.4-DDE B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE 4,4-DDT B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Aldrin B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE alpha-BHC B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE alpha-Chlordane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE alpha-Endosulfan B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE beta-BHC B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE delta-BHC B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Dieldrin B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Endrin B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE gamma-Chlordane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Heptachlor B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Heptachlor Epoxide B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Hexachlorobenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Lindane (gamma-BHC) B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Methoxychlor B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE PCB TOTAL B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Acenaphthene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Acenaphthylene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Anthracene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Benzo(a)anthracene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Benzo(a)pyrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Benzo(b)fluoranthene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Benzo(e)pyrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Benzo(ghi)perylene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Benzo(k)fluoranthene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Chrysene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Dibenzo(a,h)anthracene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Fluoranthene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
- DUPLICATE Fluorene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ

^{*} Indicates NATA accreditation does not cover the performance of this service


```
DUPLICATE Indeno(1,2,3-cd)pyrene
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Naphthalene
                               B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Pervlene
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Phenanthrene
                              B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Pyrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Acephate
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Aldicarb B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Atrazine
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Bromophos ethyl
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Carbaryl
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Carbofuran B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Chlorfenvinphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Coumaphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Demeton-S-Methyl
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Diazinon
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Dichlorvos
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Dimethoate B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Disulfoton
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Diuron B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE E.P.N B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Ethion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Ethoprop
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Ethyl azinphos
                              B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Ethyl chlorpyrifos
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Fenamiphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Fenitrothion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Fensulfothion
                               B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Fenthion
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Fonofos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Hexazinone B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Isazophos
DUPLICATE Malathion
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Methomyl
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Methyl azinphos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Methyl chlorpyrifos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
```

^{*} Indicates NATA accreditation does not cover the performance of this service


```
DUPLICATE metsulfuron-methyl
                                  B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Mevinphos
                         B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Molinate
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Monocrotophos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Parathion
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Parathion Methyl
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Phorate B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Phospholan B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Pirimiphos Ethyl B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Pirimiphos methyl
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Propazine
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Propiconazole
                              B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Prothiofos
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Simazine
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Sulfotep B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Temephos B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Tetrachlorvinphos
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Trithion B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Hexavalent Chromium
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE (m+p)-Xylenes
                              B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,1,1,2-Tetrachloroethane
                                            B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,1,1-Trichloroethane
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,1,2,2-Tetrachloroethane
                                            B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,1,2-Trichloroethane
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1.1-Dichloroethane
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1.1-Dichloroethene
DUPLICATE 1,1-Dichloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,2,3-Trichlorobenzene
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,2,3-Trichloropropane
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1.2.4-Trichlorobenzene
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,2,4-trimethylbenzene
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,2-Dibromo-3-chloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,2-dibromoethane
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,2-Dichloroethane
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,2-Dichloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
```

^{*} Indicates NATA accreditation does not cover the performance of this service


```
DUPLICATE 1,3,5-Trichlorobenzene
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1,3,5-trimethylbenzene
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 1.3-Dichloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 2.2-Dichloropropane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 2-Chlorotoluene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE 4-Chlorotoluene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Benzene
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Bromobenzene
                            B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Bromochloromethane
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Bromodichloromethane
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Bromoform B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Bromomethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Carbon Tetrachloride B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Chlorobenzene
                              B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Chloroethane
                              B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Chloroform B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Chloromethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE cis 1,2 Dichloroethene
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE cis-1,3-Dichloropropene
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Dibromochloromethane
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Dichlorodifluoromethane
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Ethyl benzene
                               B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Hexachlorobutadiene
                                       B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE isopropylbenzene
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE m-Dichlorobenzene
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Methylene Chloride
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Naphthalene
                               B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE n-Butylbenzene
                              B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE n-propylbenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE o-Dichlorobenzene
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE o-Xvlene
                          B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE p-Dichlorobenzene
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE p-isopropyltoluene
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE sec-Butylbenzene
                                   B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
DUPLICATE Styrene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ
```

^{*} Indicates NATA accreditation does not cover the performance of this service

DUPLICATE tert-butylbenzene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE** Tetrachloroethene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Toluene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE Total 1.2-Dicloroethene** B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE Total tested Trichlorobenzenes** B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total tested Xylenes B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE Total Trihalomethanes** B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE trans 1.2 Dichloroethene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE trans-1.3-Dichloropropene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Trichloroethene B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Trichlorofluoromethane B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Vinyl Chloride B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE Total Mercury** B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE Total Arsenic** B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Cadmium B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Chromium B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Cobalt B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Copper B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Total Lead B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ **DUPLICATE Total Zinc** B: Duplicate RPD reject criteria is not applicable, results are <10 times LOQ DUPLICATE Pet H/C T: Duplicate is not applicable for this analyte

^{*} Indicates NATA accreditation does not cover the performance of this service