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The NSW State Government’s Flood Policy provides a framework to ensure the sustainable use of
floodplain environments.  The policy is specifically structured to provide solutions to existing flooding

problems in rural and urban areas.  In addition, the Policy provides a means of ensuring that any new
development is compatible with the flood hazard and does not create additional flooding problems in

other areas.

Under the Policy, the management of flood liable land remains the responsibility of local government.
The State Government subsidises flood mitigation works to alleviate existing problems and provides

specialist technical advice to assist Councils in the discharge of their floodplain management
responsibilities.

The Policy provides for technical and financial support by the Government through four sequential

stages:

1. Flood Study

• determine the nature and extent of the flood problem.

2. Floodplain Risk Management Study

• evaluates management options for the floodplain in respect of both existing and

proposed development.
3. Floodplain Risk Management Plan

• involves formal adoption by Council of a plan of management for the floodplain.

4. Implementation of the Plan

• construction of flood mitigation works to protect existing development,

• use of Local Environmental Plans to ensure new development is compatible with
the flood hazard.

The Smiths Lake Flood Study constitutes the first stage of the management process for Smiths Lake

and its catchment area.  Webb, McKeown & Associates were commissioned by Great Lakes Council
to prepare this Flood Study.  Funding for this study was provided from the Department of Environment

and Climate Change and Great Lakes Council.  The following report documents the work undertaken
and presents outcomes that define flood behaviour for existing catchment conditions.
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The NSW Government’s Flood Policy provides for:
• a framework to ensure the sustainable use of floodplain environments,

• solutions to flooding problems,
• a means of ensuring new development is compatible with the flood hazard.

Implementation of the Policy requires a four stage approach, the first of which is preparation of a Flood

Study to determine the nature and extent of the flood problem.  The Smiths Lake Flood Study was
initiated in order to obtain a better understanding of flooding in the catchment. 

The specific aims of the Smiths Lakes Flood Study are to:

• determine design flood levels, flows and velocities for a range of flood frequencies,
• assess wind/wave climate and wave run-up at specific locations,

• undertake a flood damages assessment to assess the extent of the existing flooding problem
and identify utilities and roads subject to flooding,

• assess the hydraulic categories and undertake provisional hazard mapping,
• assess the impact of a greenhouse induced sea level rise.

Description of Lake System: Smiths Lake has a catchment area of 34km2 with a lake surface of

10km2.  Tributaries feeding to the lake are Wamwarra Creek, Tarbuck Creek and Bramble’s Creek.
Other inflows into the lake are largely overland flows or direct rain over the lake itself.

Smiths Lake is connected to the Pacific Ocean via an entrance which once opened naturally but since

1932 has been opened by mechanical means (digging of a narrow channel).  In the past this may have
been carried out by local residents but is now undertaken by Council.

The contributory catchment is largely undeveloped except for the small townships of Smiths Lake and

Tarbuck on the northern shore and Bungwhal on the western shore of the lake.  Northern sections
of the catchment are mostly moist open forest, with some cleared and disturbed remnant vegetation.

South of the lake, the catchment generally consists of a coastal Sclerophyll complex in National Park

areas with clear sections and disturbed remnant vegetation near the coast.

The following sub-headings provide a summary of the key elements of the study.

Review all available data, namely:
• reports, photographs, Council records,

• review of Council’s database of flooding reports,
• review of rainfall data,

• review of water level data,
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• a comprehensive field survey including floor levels, road levels and other utilities.

Determine Approach: A rainfall-runoff approach was adopted due to the absence of long term

historical flood height data.  This approach involved the setting up of two computer models - a
hydrologic model to convert rainfall to runoff and a hydraulic model to convert the runoff to flows, flood

levels and simulate the ocean entrance breakout.

Calibration to Historical Flood Levels:  This was achieved by ensuring that the modelled rate of
fall of the lake matched those actually recorded after the mechanical openings.

Determination of Design Flood Levels: Following establishment and calibration (where possible)

of the models, design rainfall temporal patterns from Australian Rainfall and Runoff (1987) were
obtained.  These data were input to the hydrologic/hydraulic models to determine design flood

behaviour including the calculation of design flood levels.  Due to the limited quality and quantity of
the calibration data available and in view of the sensitivity analyses, it is estimated that the order of

accuracy is up to ±0.3.   This order of accuracy is typical of such studies and can only be improved
upon with additional observed flood data to refine the model calibration and particularly the entrance

breakout.

Is also noted that the design flood approach assumes that Council continues with its informal entrance
opening management policy.  Should this change then this would affect the design flood levels.  A

review of this policy should be undertaken in the Floodplain Risk Management Study and a formal
policy be adopted.

Wave Runup: The maximum wave runup based on an assessment of the various parameters (wind,

fetch, foreshore) was determined for nine sites on the foreshore.  The results indicate an average
runup height of 0.4 m to 0.5 m and a maximum of 0.9 m in the 100y ARI event.  This information should

be incorporated in Council’s flood related development controls.

Flood Problem Areas: The study has indicated that floodwaters will inundate the low lying areas
surrounding the lake including the two caravan parks and the Frothy Café but no residential building

floors.

Outcomes: The main outcomes of this study are as follows:
• full documentation of the methodology and results, 

• a modelling platform that will form the basis for a subsequent Floodplain Risk Management
Study and Plan.

One recommendation of this study is to highlight the importance of collecting and maintaining a

database of rainfall, flood height and entrance breakout data.  Whilst the rainfall and flood height data
are collected by gauges it is vital that data from any future ocean breakout is recorded as photographs

(with the date/time recorded) and survey data.  During the course of this study the mechanical
opening of the entrance on 8th November 2006 was monitored and photographs/survey data obtained.
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A second recommendation is that Council should adopt a formal entrance opening policy as part of

the Floodplain Risk Management Study and Plan.  This would involve:
• a review of the existing informal policy,

• consideration given to altering the existing let out level of 2.1 mAHD,
• review of the social and environmental factors which may be adversely affected by human

intervention of the natural opening/closing regime of the lake,
• consideration given to maintaining a “maximum” berm level.  So even if Council is unable to

mechanically open the berm, the lake will open by itself at a nominated level,
• consideration given to the possible effects of the Greenhouse Effect on the opening policy.
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1. INTRODUCTION

Smiths Lakes (Figure 1) is located approximately 25km south of Forster on the NSW lower-north coast

between Wallis Lake and the Myall Lakes.  The catchment is small (34km2 including the lake) and
relatively undeveloped with approximately one fifth within the boundaries of Myall Lakes National Park

or the State Forest.  The only significant development is around the immediate lake foreshores,
namely the village of Smiths Lake which is located on the northern foreshore near the entrance, as

well as small settlements at Tarbuck Bay and parts of Bungwhal (Figure 2).  The catchment is drained
by several small creeks including Wamwarra Creek, Bramble’s Creek and Tarbuck Creek.

The lake itself has a surface area of 10km2 and is over 3km wide in places.  Within the lake there are

three islands, Big Island, Little Island and Bull Island with a total area of approximately 0.4km2.  The
ocean entrance is across a wide sandy beach called Sandbar Beach.  This entrance is normally

closed, but it is opened mechanically by Council to avoid flooding problems (usually when the lake
level reaches around 2.1 mAHD).  Lake openings occur on average about every 1¼ years.

The primary objectives of this Study are:

• to define the flood behaviour of the Smiths Lake catchment by quantifying flood levels,
velocities and flows for a range of design flood events under existing catchment and

floodplain conditions,
• to assess the hydraulic categories and undertake provisional flood hazard mapping (in

accordance with the NSW Floodplain Development Manual (2005)),
• to formulate suitable hydrologic and hydraulic models that can be used in a subsequent

Floodplain Risk Management Study to assess various floodplain management measures,
including the effects of future development.

The scope of this study is such that:

• the hydrologic model covers the entire catchment, 
• the hydraulic model incorporates the entire extent of Smiths Lake.

This report details the results and findings of the Flood Study investigations.  The key elements

include:
• a summary of available historical flood related data,  

• calibration of the hydrologic and hydraulic models,
• definition of the design flood behaviour for existing conditions through the analysis and

interpretation of model results.

A glossary of flood related terms is provided in Appendix A.
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2. BACKGROUND

2.1 Catchment Description

The Smiths Lake catchment extends for approximately 8km in the north-south direction, and from 7km
east-west (Figures 2 and 3).  It is bounded on the south by the Myall Lakes catchment, and on the

north by the Wallis Lake catchment.  The estuary is a “barrier lagoon system” with a coastal sand
dune barrier on the eastern foreshore impounding the lake waters within a drowned valley.  The

irregular outline of the drowned valley bedrock forms most of the remaining foreshores.

The lake itself has a relatively flat bed with a maximum depth of around 3.5 m below mean sea level
(-3.5 mAHD).  The foreshore areas generally rises quite steeply, at a grade of around 20% to the

surrounding hills.  The highest point in the catchment is 150 mAHD at Caves Hill, immediately west
of the lake.  The northern part of the catchment rises to about 100 mAHD.

There are several creeks, but no major rivers, draining into the lake.  The largest of the creeks is

Wamwarra Creek, which enters the lake from the north-west.  There are small, low lying floodplain
deltas where Wamwarra, Tarbuck and Bramble’s Creeks enter the lake.  At the ocean entrance there

is an extensive marine tidal delta which extends over most of the entrance area.

2.2 Previous Studies

A summary of previous relevant investigations are described in this section. 

Smiths Lake Estuary Process Study (Reference 1 - 1998)

An Estuary Process Study was completed in 1998 and reported on various attributes of Smiths Lake
including; catchment characteristics, lake hydrodynamics, sediment dynamics, water quality,

flora/fauna and waterway usage. 

Smiths Lake Estuary Management Study and Management Plan (Reference 2 - 2001)
The study reported on the environmental and socio-economic characteristics of the lake.  Possible

management options to address the various estuarine issues were proposed. 

Smiths Lake Planning Study (Reference 3 - 2000)
The study aimed to identify the opportunities and constraints to development in the catchment with

more detailed studies within the Smiths Lake village area.  The study briefly mentioned flooding within
Smiths Lake but focussed more on the impacts of future developments and a possible water sensitive

design approach.
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2.3 Causes of Flooding

Flooding within the Smiths Lake catchment may occur as a result of a combination of factors including:

• An elevated water level in Smiths Lake due to persistent rain over the entire catchment
draining into the lake.

• Closed entrance conditions.
• Raised water levels in Smiths Lake due to a high tide and/or storm surge when the entrance

is fully or partially open.
• Wind wave action along the foreshore (refer Appendix B).

• Local runoff over a small area accumulating (ponding) in low spots above the general water
level of the lake.  Generally this occurs in areas which are relatively flat with limited potential

for drainage.  This type of flooding may be exacerbated by inadequate or blocked local
drainage provisions and restricted overland flow paths.  This type of flooding is not

considered within this Flood Study.

These factors may occur in isolation or in combination with each other.

2.4 Climate

The climate is influenced by topography, latitude, local differences in altitude, proximity to the ocean,

and temperature/precipitation patterns determined by the Tasman Sea.  The Smiths Lake catchment
is relatively small, lying generally within the coastal strip and experiencing the warm, moist conditions

of the coast.  As a result the Smiths Lake catchment has a warm temperate climate, influenced by a
sub-tropical maritime air mass, with high rainfall and humidity and no large seasonal or daily contrasts.

There are a number of Bureau of Meteorology (BoM) rainfall stations within and near the Smiths Lake

catchment.  The longest available record held by the BoM in close proximity to the lake is at
Coolongalook State Forest.  For the period 1938 to 1970 the average annual rainfall is 1205 mm and

the annual median is 1091 mm.  Monthly averages and medians are shown in Table 1, where it can
be seen that the wettest month is March and the driest month is September.

Table 1: Rainfall Averages and Medians (mm)

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean 122 159 174 100 86 121 60 78 55 81 73 95
Median 97 156 123 76 55 71 31 55 41 63 74 64

Temperature data are also available at Coolongalook State Forest.  Mean daily maximum and

minimum temperatures for the period 1887 to 2004 are shown in Table 2.
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Table 2: Mean Monthly Temperatures (°C)

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Max 27.7 27.6 26.7 23.7 20.5 18.1 17.7 19.1 21.8 23.8 26.4 27.8
Min 15.8 16.3 14.7 10.8 7.4 5.2 3.6 4.6 6.6 9.6 12.1 14.3

The prevailing winds during the summer are from the north-east.  They bring warm moist air which

creates sub-tropical weather.  Winds are generally 10 to 20 km/hr but localised thunderstorms can
create gusts over 100 km/hr.

During winter the prevailing winds are from the west and south-west.  They bring cool dry air, although

when westerly winds occur in summer they can be hot and dry.  Winds are generally 10 to 20 km/hr,
but can reach up to 50 km/hr.

Average evaporation data are available at Taree.  For the period 1970 to 1997, the average annual

evaporation is 1373 mm, and the average monthly evaporation data are as shown in Table 3.

Table 3: Evaporation (mm)

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Evap 171 141 129 96 64 53 62 84 113 142 154 173

These evaporation rates are generally considered applicable for exposed locations away from

significant water bodies.  Local meteorological effects (mainly humidity) near coastal inlets can cause
reductions of 5 to 10 percent.  Evaporation is relevant for the Smiths Lake catchment due to the

significant surface area of the lake and is the main mechanism (apart from an ocean breakout) for
reducing lake levels.

Based on the latest research by the United Nations Intergovernmental Panel on Climate Change

(IPCC), evidence is emerging on the likelihood of climate change and sea level rise as a result of
increasing  “greenhouse” gases.  In this regard, the following points can be made:

• greenhouse gas concentrations continue to increase,
• the balance of evidence suggests human interference has resulted in climate change over

the past century,
• global sea level has risen about 0.1 m to 0.25 m in the past century,

• many uncertainties limit the accuracy to which future climate change and sea level rises can
be projected and predicted.

The current best estimate for projected sea level rise is of 0.18 m to 0.91 m by the year 2090.
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On a regional basis the CSIRO Climate Change Group predicted increased air and water

temperatures, and greater frequency and intensity of severe storms for the NSW coastline.  According
to some predictions, east coast lows, which are the main causes of storms and floods on the mid north

coast, would be more intense, leading to increased occurrence of gale force winds and flooding.
However, later research indicates that this may result in a possible reduction in storminess and

rainfall.

Current estimates are that design rainfalls may increase by up to 30% in parts of NSW, however in
this locality the best estimate is of up to 10%.

2.5 Catchment Description

The catchment land is largely undeveloped due to the presence of National Parks, State Forest and

other conservation areas. Protected areas cover the majority of the southern side of the lake  which
is relatively flat. A large area of the protected land is moist low lying land covered in paperbarks.  A

significant proportion of the unprotected land is rural farming land generally used to farm livestock.
This land is predominate to the west of the catchment and is the highest land within the area. 

The soils of the lake’s catchment are generally of low fertility having developed from the sedimentary

rocks which in turn developed from “acidic” volcanic bedrock.  The chief soils of the flat coastal
lowlands are leached sands which have uniform profiles, and in swamp areas, organic acid peats.

The soils are highly permeable and susceptible to wind erosion when exposed on dunes.

Land use in the Smiths Lake catchment reflects the topography and soils of the area.  Most
development is concentrated around the lake which is the central feature of the area.  Figures 2 and

4 show the existing land use/vegetation pattern in the catchment.

The only area of significant historical land use change is the Smiths Lake village area.  This is the
main development area, consisting of a mix of permanent residences and holiday homes.  There are

also a number of other residences at Tarbuck Bay and Bungwahl, and several scattered around the
lake.  The Sandbar Caravan Park is located near Smiths Lake village on the north-east foreshore,

with a golf course and two quarries nearby.  These developments have occurred progressively since
road improvements in the early 1970's.

Most of the northern catchment is native forest growing on rural land which is unused because it is

too steep and infertile.

Most of the southern catchment is within the Myall Lakes National Park and includes the NSW
University Research Station located near Horse Point.
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2.6 Human Impacts

Major human impacts affecting the catchment are mechanically opening the entrance, existing and

future development, and the “Greenhouse Effect”.

Undoubtedly the most significant human impact on flooding has been mechanical opening of the
entrance at a lake level of 1.7 mAHD from 1932 (anecdotal information) to 1999 and the current level

of opening at 2.1 mAHD.  This opening level is significantly below the natural opening level of the lake
(by around 1 m).  As a result the volume of water which flows through the entrance at breakout is

around half that which would be available for a natural breakout. 

In terms of the lake hydrodynamics, this means that the lake is opened at least twice as often as it
would naturally.  As a result entrance openings are smaller and the lake probably remains tidal for

shorter periods.  The changes in entrance hydrodynamics have major implications for sediment
dynamics, water quality, estuarine ecology and the flooding regime.

Another possible human impact on flooding is catchment clearing.  Land clearing, and in particular

urban development, can have a significant impact on the volume of runoff from a catchment.  For an
estuary like Smiths Lake which is usually closed, increased catchment runoff could reduce the time

between openings if the change in runoff volume was significant.  However, the overall level of
catchment clearing and urbanisation in the Smiths Lake catchment is not significant at this point in

time and as a result the increase in total catchment flows is likely to be less than 1%.

In local sub-catchments where development is concentrated, such as in Smiths Lake village, the
impact of catchment development can be very significant causing increased erosion.

In relation to the Greenhouse Effect there is some consensus that a rise in global ocean water levels

will occur, but it remains uncertain as to whether storm activity and rainfall levels will increase or
decrease along the NSW coast.

Any increase in mean ocean tide level would be matched by coastal erosion and accretion in the

entrance area.  As a result there would be an increase in tide levels in the lake approximately equal
to the changes in the ocean.  Such an increase would raise the level of the lake at closure and so

reduce the volume of runoff required to fill the lake to the 2.1 mAHD opening level.  This would
increase the number of entrance openings, reduce the size of the entrance channel, and probably

increase the magnitude of the average annual water balance in terms of tidal flows.

If there is an increase in rainfall and hence flood frequency, this would also increase the occurrence
of entrance breakout events and hence tidal flows throughout the estuary.  However, if rainfall levels

decrease there would be a corresponding decrease in the number of entrance openings and a smaller
average annual water balance, which would counter the effects of ocean level increases.
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2.7 Beach Berm Height

Smiths Lake is one of some 100 estuarine systems with intermittently open and closed entrances

(sometimes known as ICOLLS - Intermittently Closed and Open Lake and Lagoon Systems) along the
NSW coast.  The morphology of the entrance is a product of the interaction between the fluvial, tidal

and wave processes.  A cyclical process occurs of entrance infill, berm building and the entrance
scour and opening.  The main factor determining the flood level from a given amount of rainfall is the

initial water level in the lake, the level of the entrance berm and the mechanism for opening.

The berm is a depositional feature which results from an accumulation of sediment on the landward
entrance of the limit of wave runup activity.  Deposition of sediment occurs as the wave uprush

velocity decreases due to gravity, friction and percolation into the sands.  If conditions allowed, the
berm could rise to the maximum height of the wave runup.  The height of wave runup is a product of

the incident wave conditions (height and period) and beach slope.  Aeolian processes may also
influence the berm development.

The berm is generally characterised by a steeply sloping seaward beach face and a more gently

sloping landward face.  It is possible that without human intervention the crest of the berm at Smiths
Lake would exceed 3 mAHD.  Thus flood levels would have to reach this level before overtopping,

scouring and opening would occur.

Human intervention has meant that full development of the berm at Smiths Lake has never occurred
since 1932.
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3. DATA

The first stage in the investigation of flooding matters is to establish the nature, size and frequency

of the problem.  On a large river system there are generally stream height and historical records dating
back to the early 1900's, or in some cases even further.  However, in catchments such as  Smiths

Lake there are generally limited historical records available.  A picture of flooding must therefore be
obtained from this data set and local knowledge.  Whilst there are no long term records there is an

automatic water level recorder and pluviometer which have over 10 years of data. 

3.1 Rainfall

3.1.1 Overview

Rainfall data is recorded either daily as 24hr rainfall totals to 9:00am or continuously (pluviometer).
Daily rainfall data has been recorded for over 100 years in the Smiths Lake catchment.  These

records provide a picture of when and how often large rainfall events have occurred in the past.

However, care must be taken when interpreting historical rainfall measurements.  Rainfall records may
not provide an accurate representation of past events due to a combination of factors including local

site conditions, human error or limitations inherent to the type of recording instrument used.  Examples
of limitations that may impact the quality of data used for the present study are highlighted in the

following:

• Rainfall gauges frequently fail to accurately record the total amount of rainfall.  This can
occur for a range of reasons including operator error, instrument failure, overtopping and

vandalism.  In particular, many gauges fail during periods of heavy rainfall and records of
large events are often lost or misrepresented.

• Daily read information is usually obtained at 9:00am in the morning.  Thus if the storm
encompasses this period it becomes “split” between two days of record and a large single

day total cannot be identified.
• In the past, rainfall over weekends was often erroneously accumulated and recorded as a

combined Monday 9:00am reading.
• Rainfall records can frequently have “gaps” ranging from a few days to several weeks or

even years.

3.1.2 Available Rainfall Data

Table 4 presents a summary of the BoM rainfall gauges located close to, or within the catchment.

There may also be other private gauges in the catchment (bowling clubs, schools) but these data
have not been collected as there is no public record of their existence.
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Table 4: BoM Daily Read Rainfall Stations within a 15km radius of Smiths Lake

Station
No.

Station Name Elevation
(mAHD)

Distance (km)
from Smiths

Lake

Date Opened Date Closed

60144 Smiths Lake
(Patsys Flat Road)

40 0 Apr 1980 Current

60088 Pacific Palms 42 4.5 Sep 1968 May 1983
60028 Seal Rocks Camping

Reserve
4 7.4 Sep 1897 Current

60047 Bungwahl (Buttaba) 32 10 Sep 1961 May 1994
60032 Topi Topi n/a 10.6 Jan 1936 May 1957
60095 Bungwahl n/a 11.7 Mar 2002 Current

n/a = not available

Data was not collected for gauges outside the catchment as they are considered to be too far away
to be relevant.

3.1.3 Analysis of Daily Read Data

An analysis of daily rainfall data was undertaken to identify and place past storm events in some

context.  All daily rainfall depths greater than 150 mm recorded at 60028 (109 years of record), 60047
(33 years of record), 60144 (26 years of record), 60032 (21 years of record) and 60088 (15 years of

record) have been ranked and are shown in Table 5.  The Manly Hydraulics Laboratory (MHL)
pluviometer data at Tarbuck Bay (1996 to present) is also shown (refer Figure 5a).  It should be noted

that these are 24 hour totals recorded at 9:00am and thus do not necessarily compare with the peak
24 hour depths recorded by the pluviometer.

Table 5: Daily Rainfalls Greater than 150 mm

Rank Date Rainfall
(mm)

Rank Date Rainfall
(mm)

MHL - TARBUCK BAY: 60088 - PACIFIC PALMS:
1 14/05/2003 197 1 13/03/1974 202
2 04/11/2006* 195 2 04/03/1977 168

60028 - SEAL ROCKS: 60032 - TOPI TOPI:
1 13/03/1974 254 1 18/06/1949 220
2 12/03/1974 220 2 21/01/1938 172
3 17/01/1940 191 3 02/05/1953 166
4 13/01/1911 184 60047 - BUNGWAHL (BUTTABA)
5 19/03/1940 184 1 13/05/1963 341
6 13/01/1968 176 2 13/03/1974 216
7 17/03/1907 165 3 04/03/1977 186
8 24/01/2001 163 4 21/01/1971 166
9 16/04/1927 160
10 20/03/1959 151

Note: 60095 (Bungwahl) and 60144 (Smiths Lake) did not have any recorded daily rainfall above 150 mm.
 * November 2006 record only included for Tarbuck Bay
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3.1.4 Analysis of Pluviometer Data

Since 1996 Manly Hydraulics Laboratory (MHL) has been operating a pluviometer at Tarbuck Bay on

Smiths Lake.  The data from May 1996 to December 2006 was analysed. From the 15 minute interval
data over this period the maximum rainfall for given durations were calculated and are shown in Table

6.

Table 6: Maximum Depths - Tarbuck Bay Pluviometer

Duration Rainfall in Period (mm)
15 min 30

1 hr 103
2 hr 124
4 hr 139
6 hr 160
12 hr 184
24 hr 199

The two periods of significant rainfall producing the maximum depths occurred on 6th to 7th January

2006 and 3rd to 5th November 2006.  Up to the 4 hour durations were from the January 2006 event and
the longer durations from the November 2006 event.  Cumulative mass curves for these two periods

are provided on Figure 5b.  The 6th to 7th January event is significant as it exceeded the 1h and 2h
500y ARI design rainfall depths.  The 3rd to 5th November event exceeded the 6h 200y and 12h 100y

design rainfall depths. 

It would appear that these events were fairly localised as the rise in the lake water level was only
approximately 0.2 m in January 2006 and 0.3 m in November 2006.

3.1.5 Design Data

Design rainfall data obtained from Australian Rainfall & Runoff (Reference 4) are given in Table 7.
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Table 7: Design Rainfall Data

Duration Rainfall (1) Average Recurrence Interval (y)
1 2 5 10 20 50 100 200 500 PMF

1h Intensity (mm/hr) 31 40 51 57 65 75 83 91 101 320
Depth (mm) 31 40 51 57 65 75 83 91 101 320

2h Intensity (mm/hr) 20 25 32 36 41 47 51 56 62 235
Depth (mm) 40 51 64 71 81 93 103 112 125 470

6h Intensity (mm/hr) 10 13 15 17 19 22 24 26 28 380
Depth (mm) 60 75 92 101 114 130 142 153 169 760

9h Intensity (mm/hr) 7.7 9.7 12 13 14 16 18 19 21

N
O

T
 C

A
LC

U
LA

T
E

D

Depth (mm) 69 87 105 115 129 146 159 172 190
12h Intensity (mm/hr) 6.4 8.0 9.6 11 12 13 15 16 17

Depth (mm) 76 96 116 126 141 160 174 187 206
18h Intensity (mm/hr) 5.0 6.3 7.6 8.3 9.3 11 12 13 14

Depth (mm) 89 112 136 149 167 190 207 224 247
24h Intensity (mm/hr) 4.2 5.2 6.4 7.0 7.9 9.0 10 11 12

Depth (mm) 100 126 153 168 188 215 234 254 280
30h Intensity (mm/hr) 3.6 4.6 5.6 6.1 6.9 7.9 8.6 9.3 10

Depth (mm) 108 136 167 183 206 236 257 279 308
36h Intensity (mm/hr) 3.2 4.0 5.0 5.5 6.2 7.0 7.7 8.4 9.2

Depth (mm) 115 146 178 197 222 253 277 301 333
48h Intensity (mm/hr) 2.6 3.3 4.1 4.5 5.1 5.9 6.5 7.0 7.8

Depth (mm) 126 160 198 218 246 283 310 337 373
72h Intensity (mm/hr) 2.0 2.5 3.1 3.5 3.9 4.5 4.9 5.4 6.0

Depth (mm) 142 180 224 248 281 324 356 388 431

(1) Intensity refers to the average hourly depth of rainfall for the storm period.
Depth refers to the total depth of rainfall falling in the storm period.

3.2 Tarbuck Bay Water Level Data

The Department of Public Works and Services - MHL operates a network of continuous water level

recorders along the NSW coast, one of which is located in Smiths Lake at Tarbuck Bay (Figure 2).
Water level data at Tarbuck Bay (Figure 6) is available from May 1996 to November 2006.  Hourly

readings were obtained for this period with the highest water level recorded of 2.25 mAHD on 29th May
2005.  The long term average water level based upon the nine years of Tarbuck Bay data available

is approximately 1.0 mAHD. 

The historical maximum rates of rise of the lake level were calculated based on hourly data for various
time periods (Table 8).  By comparison the estimated rates of rise for the 5y and 100y ARI design

events are also shown.
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Table 8: Maximum Rate of Water Level Rise (1996 to 2006)

Time

(hours)

Recorded # Design *
Rise

(m/period)

Rate of
Rise

(m/hr)

Date 5y ARI
Rise

(m/period)

100y ARI
Rise

(m/period)

500y ARI
Rise

(m/period)

PMF
Rise

(m/period)
1 0.12 0.12 14/07/1999 0.17 0.28 0.35 1.12
2 0.14 0.07 14/07/1999 0.21 0.34 0.42 1.63
6 0.17 0.03 14/11/2006 0.27 0.45 0.54 2.62
12 0.24 0.02 31/10/2004 0.30 0.51 0.62 n/c
24 0.38 0.02 14/05/2003 0.33 0.61 0.77 n/c
36 0.45 0.01 13/05/2003 0.31 0.66 0.85 n/c

Notes: * The design events assume 0 mm initial loss and 2.5 mm/h continuing loss over the catchment and
that the entire rainfall enters the lake within the specified time period.  This latter assumption is largely
correct for the 12 hour and longer durations but will not be correct for the shorter durations, particularly
for the 1 and 2 hour durations where runoff will enter the lake over several hours.  Thus for the shorter
design durations the rise per hour is exaggerated.

# Rises below 1.1 mAHD (i.e due to tidal affectation) were not considered.
N/C Not calculated.

3.3 Entrance Openings

3.3.1 Background

The ocean entrance has been opened mechanically since 1932.  Initially the entrance was opened
by fishers, usually to encourage the running of prawns.  Since the 1960's the entrance has been

opened by Council, usually to prevent flooding of low lying developments, but also occasionally for
water quality or construction purposes.

Until 1999 a lake level of around 1.7 mAHD triggered an entrance opening to prevent flooding.

However after 1999 the trigger level was increased to 2.1 mAHD in order to reduce the number of
openings and so more closely replicate the natural opening regime.  At this level there are a number

of developments potentially subject to inundation, including the Frothy Coffee boat shed, the foreshore
camping areas at Sandbar and several septic tanks, notably at the UNSW research station.  In

1996/1997 the majority of septic tanks in the area were replaced with a mains sewage system.

A survey of the entrance berm across Sandbar Beach was carried out in November 1995 by the
Department of Natural Resources (under its prior name) which showed the lowest section of the berm

to be at 2.6 mAHD.  This level is above the present 2.1 mAHD trigger level for mechanical opening.

A second management change after 1999 was the relocation of the mechanical opening to be a
minimum distance of 150 m from the southern dune.  This was undertaken to minimise erosion of the

southern dune.  All subsequent openings have conformed with this condition.
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3.3.2 Historic Entrance Openings

Since 1996 Great Lakes Council has kept records of mechanical openings of the entrance and  MHL

has recorded the lake level at Tarbuck Bay (Figure 6).  The greatest rises in a 24 hour period are
shown on Figure 7.

There have been nine openings since 1996 with eight of these recorded by the Tarbuck Bay gauge.

These eight openings have been graphed together with the rainfall data in Figures C1-8 in Appendix
C.  The details of the entrance openings are summarised in Table 9 and described below.

Table 9: Historical Entrance Openings Since 1996

Date
Opened

Time of
Opening

Water
Level at

Opening

(mAHD)

Hrs to
Open(1)

Closing
Date(2)

Days to
Close

Opening Notes Maximum Water Level
Recession (m)

Rain
Influence

1hr 2hr 6hr

10/01/1996 * 1.87 * * * South corner, severe

erosion

* * * No

10/04/1997 16:00 1.55 28 09/05/1997 29 30 m from south corner 0.08 0.15 0.42 No
18/06/1998 13:00 1.84 25 01/07/1998 13 40 m from south corner 0.13 0.26 0.67 No
03/05/1999 20:00 1.90 26 13/05/1999 10 Some erosion on south

dune

0.23 0.45 0.98 No

MANAGEMENT CHANGES OCCURRED
11/05/2001 15:00 2.14 31 20/05/2001 10 200 m from southern dune 0.20 0.39 0.84 No
04/06/2002 12:00 2.03 41 29/06/2002 25 160 m from southern dune 0.15 0.29 0.74 No
15/05/2003 11:00 2.10 32 28/05/2003 13 150 m from southern dune 0.21 0.40 0.86 Yes
29/03/2005 12:00 2.25 34 08/04/2005 10 150 m from southern dune 0.28 0.52 1.07 No
08/11/2006 12:00 2.22 18.5 ? ? See Figure 8b 0.32 0.59 1.21 No

Notes:
(1) Time to open is taken as the time from the initial fall in water level to the time the tide becomes an influence.
(2) The date of closing is subjective and is based upon the combined effect of the cessation of tidal influence in the lake and where

lake levels begin a long term trend of rising.
*            Tarbuck Bay water level data is not available for the 1996 event.

January 1996: From May 1995 to late November 1995 the lake water level slowly built up from
1.0 mAHD to 1.7 mAHD.  The level remained constant at 1.7 mAHD over December 1995.  On

4th January 1996 the level rose to 1.75 mAHD.  On 10th January the level started to rise again,
reaching 1.85 mAHD by midday on 11th January.  The entrance was opened mechanically early in the

morning of 12th January.  The entrance remained open for approximately three months until mid April
1996 when it closed to tidal flows with the lake level at approximately 0.5 mAHD.

April 1997: This was a non-typical event.  The lake level at the time of opening was only 1.55 mAHD

and an opening was made to assist in the laying of sewer pipes.  This allowed pipe trenches to be
excavated without the need for dewatering.

June 1998: From April 1998 the lake level gradually built up to 1.84 mAHD on the 18th June 1998

when it was opened.  Upon opening the level fell rapidly at a rate of 0.13 m per hour.  It took 9 hours
for the entrance to develop.  The entrance stayed opened for 13 days.
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May 1999: In the preceding months to May 1999 the water level gradually built up until a peak level

of 1.9 mAHD was reached on 3rd May and the entrance was mechanically opened.  The rate of
recession of waters was a maximum of 0.23 m per hour which reflected the high starting water level.

Erosion of the southern dune was reported as a result of this event.

May 2001: Over the preceding 5 months to the May 2001 event the water level rose gradually.  Over
the immediate preceding days high rainfall lead to the fairly rapid increase in lake levels resulting in

an increase of 0.4 m over the final two days prior to opening at 2.14 mAHD on 10th May.

June 2002:  In June 2002 the entrance was opened at a level of 2.03 mAHD which followed a gradual
rise from 1.65 mAHD over a period of approximately 10 days.

May 2003: The May 2003 entrance opening is different to the other openings due to the large volume

of rain falling both in the lead up to and after the opening.  The rate of rise of the lake prior to the
opening was much faster than recorded in other events with a rise of 0.48 m to reach 2.1 mAHD in

the preceding 24 hours.

March 2005: The level at the opening on 29th March was the highest recorded (2.25 mAHD).  The
initial fall in the water level was very rapid.

November 2006: This opening was monitored by an engineer from Webb McKeown and a large

number of photographs (Figure 8b) and dimensions recorded (Table 10).  The water level rose
gradually (1 m to 1.75 mAHD) from June to September 2006 followed by a rapid 0.2 m rise.  The water

level then slowly fell until a 0.3 m rise on 5th November precipitated the opening on 8th November.

Table 10: November 2006 Opening

Time Length Width
(m)

Depth
(mm)

Cross-Sectional
Area (m2)

Comments

12:00 pm 80 5 300 15 width 5 m bed scouring at ocean
12:30 pm 80 6 300 18 width still only 6 m scour working upstream
1:00 pm 80 8 300 24 standing waves - excavated sand restricting

width and upstream movement of erosion
scour

1:30 pm 80 10 300 30 300 mm deep over 10 m width but deeper
where restricted

1:45 pm 80 10 500 50 width 15 m at ocean, 10 m half-way up and 10
m upstream

2:00 pm 80 12 500 60 500 mm depth at 12 m width, “U” channel
10 m upstream 15 m at ocean

2:30 pm 85 15 500 75 18 m at ocean, “U” channel upstream
2:45 pm 90 20 700 140 at 2:50 pm upstream shoal gone, flow

increases
2:45 pm 100 28 900 250 one big standing wave
3:10 pm 33 1500 500 big standing waves moving upstream rapid

erosion
3:15 pm 40 2000 800 big standing waves moving upstream rapid

erosion
3:30 pm 47 2000 940 big standing waves moving upstream rapid

erosion
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3:45 pm 56 big standing waves moving upstream rapid
erosion

4:00 pm 59 flows change to sub-critical, no standing
waves - bank erosion slows

4:15 pm 70?
5:00 pm 85?
8:00 pm 100+

Note: All dimensions are estimates.

3.4 Wind Action across the Lake

Wind blowing across an open water body creates surface currents as a result of wind friction on the
water.  These currents flow in the predominant wind direction.  When approaching land, the wind

generated currents pile up creating a slight increase in water level on the down wind shoreline.  This
is called wind setup.

There are no data on wind generated currents or wind setup in Smiths Lake.  Based on comparisons

with other wide shallow estuaries in NSW it is reasonable to assume that currents up to 0.5 m/s (or
approximately 3% of average wind speed) could be generated during prolonged storm conditions,

resulting in a setup of up to 0.1 m.

Wind blowing across Smiths Lake also creates waves.  The height and period of the waves is
determined by the fetch length, water depth, wind velocity and wind duration.  As waves break they

runup the foreshore.  This is called wave runup and has been examined in Appendix B.

3.5 Tidal Hydrodynamics

Ocean water levels have an important impact on the hydrodynamics of the lake when the lake

entrance is open.

Ocean levels near the lake entrance are determined by the normal astronomic tide plus the effects
of winds, waves, currents, barometric pressure, etc.  As is the case for all the NSW coast, there are

two astronomic tides each day, with a mean tidal range of around 1.0 m, a mean neap range of 0.7 m,
and a mean spring range of around 1.4 m.  The maximum tidal range is generally less than 2.0 m, with

peak water levels around 1.1 mAHD.  However, for an open coast beach entrance such as Smiths
Lake, ocean levels during storms can exceed 2.0 mAHD due to storm surge and wave setup effects.

Several flood studies on the mid-north coast have assumed a 100y ARI ocean level of 2.6 mAHD
(Reference 10).  Wave runup on the foreshore might reach 5 mAHD on a suitably graded foreshore.

The effect of ocean levels is discussed further in Section 7.4.
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When the lake entrance is open, levels within the estuary are predominantly determined by the ocean

tide and bathymetric effects in the entrance channel.  Larger ocean tides result in larger variations in
the lake, but the size (width, depth and length) of the entrance channel has a far greater effect.  Tidal

influence in the lake is generally greatest immediately after breakout when the channel is at its largest.
Immediately after breakout is completed, sediments from the beach system begin to infill the entrance

and restrict flows.

Infilling is usually quickest after breakout, but is dependent on the amount of sand being moved into
the entrance by ocean waves and currents, by the size of the tides, and the volume of catchment

runoff.  On average it takes about 2 months before the entrance is completely blocked to tidal flows,
although wave overtopping of the low entrance dune can continue for some time after closure.

3.6 Historical Flood Information

A data search was carried out to identify the dates and magnitudes of historical floods.  The search

concentrated on the period since approximately 1970 as it was considered that data prior to this date
would generally be of insufficient quality and quantity for model calibration.  Reliance must therefore

be made on the following:
? Great Lakes Council,

? previous reports,
? local residents

? Bureau of Meteorology rainfall records,
? MHL water level and pluviometer data at Tarbuck Bay.  

3.7 Other Data

3.7.1 Lake Hydrosurvey

The hydrosurvey (Figure 9a) shows the lake is separated into three basins of similar surface area.

The middle basin between Big Island and Simons Point is the largest and deepest with an area of
around 3.6km2 and a maximum depth to minus 3.5 mAHD.  The western basin has an area of 3.2km2

and a depth to minus 2.5 mAHD, while the eastern basin or entrance area has an area of around
3.0km2 but a depth over much of the area of less than minus 1 mAHD except in the northern Symes

Bay portion where depths exceed minus 3.5 mAHD.

The entrance bathymetry has a major impact on lake hydrodynamics, with the barrier deposits
preventing (entrance closed) or severely restricting (entrance open) tidal flows.  The overall shallow

depth of the lake (<4 m below mean sea level) also means that wind (and tide) generated currents are
significant.
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3.7.2 Entrance Openings

Because the lake is normally closed at the ocean entrance and hence not influenced directly by tides,

the recurrence period and length of time the entrance remains open are of major significance to the
hydrodynamics of the estuary.  When the entrance is open the hydrodynamics of the lake are

determined by the size of the entrance channel.

Previous reports indicate that the lake is opened on average every eighteen months and that the
entrance then remains open for varying periods, usually for around two months.  Periods of over 12

months have been reported.  A concerted effort was made to confirm these entrance opening/closing
periods, which appear to be based on anecdotal evidence.  However, there is only very limited

recorded data on entrance openings prior to 1996.  What little information is available does not
contradict the above findings.

Figure 6 shows the eight openings recorded by the Tarbuck Bay water level recorder.

3.8 Survey

Bathymetry of the lake was available from Reference 1 (DECC formerly DNR funded survey) and is
reproduced on Figure 9a.

Detailed survey information was undertaken as part of this study by Mark Searles Surveyors.  The

data included:
? building floor levels below 4 mAHD,

? road levels of low-lying (below 4 mAHD) public roads around the foreshore of Smiths Lake.

This information is provided on Figure 9b.

3.9 Community and Local Resident Survey

Each resident, of surveyed properties (building floors below 4 mAHD) was asked if they could show

any historical flood mark on their property and if so these were photographed, levelled and described.

3.10 Photographic Record

Council and Webb McKeown (opening of November 2006) have a collection of photographs depicting

flooding along the foreshore and various entrance openings.  A selection of this information is
provided as Figures 8a and 8b.
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4. FLOOD STUDY PROCESS

A diagrammatic representation of the Flood Study process is shown in Diagram  1.  The WBNM

hydrologic model (Reference 5) was established for the entire catchment (Figure 3) and used to
convert rainfall data into streamflow for input to a hydraulic (RUBICON - Reference 6) model.  To

ensure confidence in the results, both models require calibration and verification against observed
historical events.  As there are no flow gaugings on the tributaries entering Smiths Lake it was not

possible to calibrate the hydrologic model to peak flows.  Recommended model parameters were
therefore adopted.  Calibration of the hydraulic model (RUBICON) was possible and focussed on

replicating the average fall in water level in the lake following an opening.  The calibrated RUBICON
model was then used to quantify the design flood behaviour for a range of design storm events up to

and including the Probable Maximum Flood (PMF).

Diagram 1: Flood Study Process
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5. HYDROLOGIC MODELLING

5.1 General

Hydrologic models suitable for design flood estimation are described in AR&R 1987 (Reference 4).
In current Australian engineering practice, examples of the more commonly used runoff routing models

include RAFTS (Reference 7), the Watershed Bounded Network Model (WBNM - Reference 5) and
RORB (Reference 8).  These models allow the rainfall depth to vary both spatially and temporally over

the catchment and readily lend themselves to calibration against recorded flow data (if available).

For the present study the WBNM hydrologic model has been used, largely because it has been widely
used on surrounding catchments.

5.2 WBNM Modelling

5.2.1 Model Configuration

The WBNM model simulates a catchment and its tributaries as a series of sub-areas based on

watershed boundaries linked together to replicate the rainfall/runoff process through the natural
stream network.  The adopted subdivision is shown on Figure 3.  The model input data includes

definition of physical characteristics such as:
? surface-area,

? proportion developed (generally only for urbanised catchments),
? stream shortening (where man-made alterations have occurred).

The model established for this study comprised a total of 14 sub-areas (including the lake itself).  The

layout of the sub-areas was defined to provide a reasonable level of spatial detail within the catchment
and to provide flow hydrographs at specific locations for inclusion into the hydraulic model.

Catchment areas were determined from topographic contours provided by Council in GIS format.

Given the low density of development in the urban areas it was assumed that there were no
impervious areas of sufficient magnitude to be included in the hydrologic model.
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5.2.2 Key Model Parameters

In calibrating the WBNM model, two main parameters can be varied to achieve a fit to observed data

(peak flow and volume):
? Rainfall losses

Two parameters, initial loss and continuing loss, modify the amount of rainfall excess to be

routed through the model storages.  
? Lag parameter

The lag parameter affects the timing of the catchment response to the runoff process.

5.2.3 Calibration

Calibration of a hydrologic model is only possible if there are flow data (obtained from streamflow

gaugings) available.  As there are no such data for the tributaries entering Smiths Lake calibration was
not possible.

A limited volumetric calibration is possible by calculating the volume change in the lake and comparing

this to the volume of runoff based on the rainfall data.  The main limitation of this form of calibration
is that it is highly dependant on the assumed loss rate and rainfall distribution.  Table 8 provides some

indication of the maximum recorded rate of rise and when compared to the design rises (assuming
0 mm initial loss and 2.5 mm/h continuing loss) indicates an ARI of around the 5y ARI except for the

24 and 36 hour durations where the recorded rise exceeds the 5y ARI.  The design values assume
a constant rainfall over the entire catchment which will rarely occur.  Figure 5b indicates that the 6th

to 7th January 2006 and 3rd to 5th November 2006 rainfall were very localised given the relatively small
increases in lake level.

In the absence of available calibration data the following parameters were adopted for design:

Storage routing parameter ‘C’ = 1.29

Initial Loss = 0 mm
Continuing Loss = 2.5 mm/h
(this was applied uniformly across
the catchment and no account was
taken of the different losses for rain
falling on land as opposed to water)
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6. HYDRAULIC MODELLING

6.1 Approach

The RUBICON hydrodynamic model software was used to quantify the hydraulic aspects of flood
behaviour (e.g. flood levels and velocities).  RUBICON is a fully dynamic computer based 1D model

(quasi 2D) and uses different elements to simulate complex flow over floodplains and through channel
systems.  The model is capable of  accurately simulating tidal hydrodynamics and is able to simulate

entrance opening dynamics.

The lake system is modelled in RUBICON with the hydrographs included from  the WBNM model.

6.2 Rate of Rise of Lake

Generally in flood studies the hydraulic model is used to replicate the recorded peak height profile

along a creek for several historical events.  Inflows to the hydraulic model are obtained using the
historical rainfall depths and temporal patterns from pluviometers.

This approach was initially investigated with a view to using RUBICON to replicate the rise in water

level.  This can be achieved through adjustment of rainfall losses and assumptions on the rainfall
distribution over the catchment.  However this is a relatively arbitrary approach and provides little

confidence in the use of results for design.  For example, it is obvious that in both the 2006 rainfall
events (January and November) there was either significant initial losses or the period of intense

rainfall was very localised over the catchment.

6.3 Rate of Fall of Lake

The RUBICON model can be used to replicate the opening of the beach berm to the ocean.

As noted in Table 9 nine openings have been recorded since 1996 and eight of these have been

recorded by the Tarbuck Bay water level recorder.  These events together with the hourly rainfalls
are provided on Figures C1 to C8.

With the exception of May 2003 all the openings occurred when the rain had ceased.  Whilst there

may have been some residual runoff still entering the lake for the remaining events, the amount is
considered to be insignificant.

The rate of fall of the lake for all eight events together with the average is shown on Figure 10.  Most

notably all the events since the change in the opening level in 1999 show similar rates of fall.
Calculated discharges through the entrance are provided on Figure 11.
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6.4 Calibration - Entrance Opening

The physical processes involved in entrance breakouts from coastal lagoons are extremely complex

and cannot be readily modelled.  A physical model is deficient because scale factors mean that grain
size, water depth, turbulence and other features cannot be accurately represented.  Numerical

modelling is difficult because of the rapid changes in flow state and sediment movement
characteristics.

However, when examining lagoon estuaries it is necessary to be able to accurately simulate the

entrance opening process.  Webb, McKeown & Associates have written a sediment movement,
process based, entrance breakout routine. The routine was developed specifically to allow the

RUBICON hydrodynamic model to simulate the breakout of coastal lagoons.  This procedure has
previously been used at Terrigal, Wamberal, Avoca and Cochrone Lagoons at Gosford and at the

mouth of the Shoalhaven River at Shoalhaven Heads.

The RUBICON model simulates flow over the entrance berm during breakout using the broad-crested
weir formula.  The routine provides for both free overflow and submerged flow.  Scour from the berm

during breakout is calculated using the Ackers and White total sediment load equation.

The Ackers and White equation calculates total sediment load as a function of:
? grain size,

? specific gravity,
? velocity,

? hydraulic gradient,
? hydraulic radius,

? depth.

The entrance berm is defined as a low, flat, trapezoidal prism perpendicular to the flow path.  Breakout
an occur as a result of overtopping or mechanical opening.  The breakout channel can be defined to

suit the constraints of the site.

The beach berm is described in the model by the following parameters:
? its length (parallel to the ocean),

? its width (perpendicular to the ocean),
? its depth (thickness of sand from crest level to the lowest level it erodes),

? grain size (the D35 value is used in the Ackers and White formula).

A width to depth ratio and a side batter slope were provided in order to define a trapezoidal channel.
Scouring (removal of sediment) occurs from the side and the base in order to maintain the trapezoidal

channel dimensions.
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At each timestep the program calculates the total sediment load at the entrance using the Ackers and

White formula.  It is assumed that this load is obtained from scouring of the beach berm.  The
dimensions of the berm are thus reduced according to the pre-selected criteria to account for the

scouring of the trapezoidal channel.  No infilling of the berm is permitted.

The results for the following adopted parameters are provided on Figure 12:
? initial water level:  2.2 mAHD (this level was taken rather than 2.1 mAHD as in November

2006 and March 2005 the lake was at this level before it was opened),
? four constant ocean levels of 0 m, 0.5 m, 1.0 m and 1.5 mAHD and using the recorded tides

(Port Stephens gauge),
? D35:  0.25,

? maximum width: 60 m,
? inflow: nil,

? maximum depth to which erosion can occur: -1 mAHD,
? depth of cut by excavator: 0.4 m (i.e. to an invert of 1.8 mAHD, a 1:20 depth to width ratio

is assumed).

A summary of the key points from Figure 12 are:

? The rate of fall of the lake for the five events (May 2001, June 2002, May 2003, March 2005
and November 2006) are shown as solid lines.  Data for the previous openings (January

1996, April 1997, June 1998, May 1999) are not shown as these events were opening at a
lake water level less than 2 mAHD.  Each of the five events were opened at slightly different

levels which makes a comparison of the rate of fall of the lake difficult.  It is noted that the
2001 and 2003 events were opened at approximately the same level and produced very

similar rates of fall.  The 2002 event matched the 2001/2003 profiles after approximately 6
hours.  The 2005 and 2006 profiles were very different, even though they started at

approximately the same level.  There is no apparent explanation for this other than it is
assumed that the initial cut in the dune and amount of sand to be removed differed.  We note

for example that in November 2006 some excavation occurred inland of the berm within the
sand delta.  Possibly this did not occur in March 2005.

? Whilst it is possible to alter the parameters within the hydraulic model to reflect different

extents of excavation, there is no record of these extents for the actual extents, except for
November 2006.  The model has therefore been set up to provide the “best fit” to the range

of data.

? The model was run for four different fixed tides (0 m, 0.5 m, 1 m, 1.5 mAHD).  The results
indicate that the 1.5 mAHD tide affects the rate of fall after 2 hours.  For the three other fixed

levels the rate of fall diverges after say 4 hours but by this time the lake has fallen by 0.3 m
and flooding within the lake is not affecting properties.
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? The tides for the five “opening” events were obtained from the Port Stephens gauge and the

model run for each of these tidal conditions.  The results show that it is only after 6 hours
that the different tidal conditions have any affect on the rate of fall.  It is noted that the

November 2006 “tide” produced the most rapid rate of fall which may partially explain why
the November 2006 rate of fall was the most rapid of all the “opening” events.

In conclusion the “normal” tide range of up to 1 mAHD has no significant impact upon the rate of fall

of the lake in the first few hours, by this time the lake has fallen by some 0.3 m.  The key determinant
of the rate of fall is the size of the cut and nature of the erosion procedure.  Further collection from

future lake openings is required to develop a greater understanding of the mechanisms controlling the
rate of erosion.

Further discussion of the impacts of ocean level are provided in Section 7.
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7. DESIGN FLOOD RESULTS

7.1 Overview

There are two basic approaches to determining design flood levels, namely:
? flood frequency analysis - based upon a statistical analysis of the flood events, and

? rainfall/runoff routing - design rainfalls are processed by a suite of computer models to

produce estimates of design flood behaviour.

The flood frequency approach requires a reasonably complete homogeneous record of flood

levels/flows over a number of decades to give satisfactory results.  No such records were available

within the catchment.  For this reason rainfall/runoff routing approach using the WBNM model results

was adopted for this study.  These hydrographs define boundary conditions to the RUBICON
hydraulic model.  This approach reflects current engineering practice and is consistent with the quality

and quantity of available data.

7.2 Hydrologic Modelling

Design temporal patterns were derived from AR&R (Reference 4) and used as input for the WBNM

model.  Uniform depths of rainfall assuming zero initial loss and 2.5 mm/h continuing loss with zero
areal-reduction factor were applied across the entire catchment.  

Design inflow hydrographs for a range of durations (ranging from 1 hour to 36 hours) were derived

for design events from the 2y ARI to the 500y ARI and PMF.

7.3 Hydraulic Modelling

Preliminary hydraulic modelling has indicated that the peak water level in the lake is determined by:
? the initial water level in the lake prior to the design rainfall,

? the depth of rainfall over the catchment and the consequent amount of runoff.  The temporal
pattern of the rainfall is largely irrelevant as it is the volume of runoff rather than the peak

flow entering the lake that is critical,
? the height of the entrance berm.  If the entrance is open then the lake can easily contain the

100y ARI design runoff (refer Table 8).  As indicated previously the height of the berm has
been “regulated” since 1932 by man-made openings.  Currently the”trigger level” is

2.1 mAHD, although it reached 2.2 mAHD in November 2006.  This is the most critical factor
determining design flood levels,

? whether a man-made opening in the entrance berm can be undertaken.  In the eight previous
openings the opening has been undertaken following the peak rainfall and generally under

fair weather conditions.  Under adverse weather conditions it is possible that a man-made
opening could not be undertaken.  The lake level would then rise (assuming there is
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sufficient inflow) to the height of the entrance berm.  Once the water level reaches the height

of the beach berm and overtopping occurs then the lake level will cease to rise and will fall
as floodwaters from the lake scour out the entrance,

? Table 8 indicates that only in events larger than the 500y ARI will the volume of runoff
produce a rise greater than 0.85 m.

7.4 Tailwater Ocean Conditions

7.4.1 Design Data

Tidal data are available from the Forster gauge as well as from Port Stephens.  The Forster gauge,
though the closest to Smiths Lake, is located within the entrance heads and for this reason does not

accurately record the ocean tide levels.  Port Stephens is the next closest tidal gauge and historical
records for this gauge were obtained.  The highest level recorded since 1986 at the Forster gauge

is 1.0 mAHD in June 2005 and at Port Stephens is 1.34 mAHD in June 1999.

The design ocean levels at Fort Denison based on 80+ years of record (as reported in the Forster
South Breakwater Physical Model - July 2004) are:

? 100y ARI 1.50 mAHD,
? 50y ARI 1.47 mAHD,

? 20y ARI 1.43 mAHD,
? 10y ARI 1.39 mAHD,

? 1y ARI 1.28 mAHD.

These estimates include a storm surge component but not wave setup (Fort Denison is not affected
by wave setup).

Accurate estimates of stillwater (i.e. not wave set up) ocean levels greater than the 100y ARI are not

possible but an indicative Extreme level is 1.78 mAHD (reported in Reference 11).

It should be noted that the highest astronomic tide in a year reaches approximately 1.1 mAHD. 

7.4.2 Wave Setup

The above design ocean levels are applicable along the NSW coast where there is no wave setup

component.  However at Smiths Lake some wave setup component is expected.

Wave setup occurs in the surf zone where the shoreward kinetic energy of the breaking and broken
waves is converted to gravitational potential energy in the form of increased water levels.  Wave setup

is largely confined to the nearshore area and is highly dependent on factors such as the wave height,
wave length, water depth and embayment slope.
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Along exposed NSW beaches wave setup can be of the order of 1.7 m during very large energy wave

climate conditions, but this setup is only maintained if the wave energy remains high for a sustained
period of around an hour.  Wave setup can be relieved by a lull in wave energy, by alongshore rips

and currents and at estuary entrances.  The extent of the relief is highly dependent on the specific site
conditions.

The estimated 100y ARI ocean level at Wallis Lake is 1.85 mAHD (assuming no climate change).

However this is a deep entrance with a relatively small wave setup component.

At Smiths Lake no detailed ocean water level studies have been undertaken.  The Forster/Tuncurry
Flood Study (September 1989 - Reference 10) indicated a peak wave setup of

100y ARI 1.6 m

50y ARI 1.45 m
20y ARI 1.3 m

for shallow unprotected estuary or river entrances.

Thus a peak level of 3.1 mAHD (1.5 mAHD ocean level plus 1.6 m wave setup) could be reached.

However this assumes coincidence of the two peaks.  Reference 10 (and compatible with Reference
12) indicated peak design ocean levels including wave runup of:

100y ARI 2.6 mAHD

50y ARI 2.4 mAHD
20y ARI 2.2 mAHD

No ocean estimates are available for events greater than the 100y ARI.

7.4.3 Coincidence of Elevated Ocean Level and Design Rainfalls

Investigation of the coincidence of the elevated ocean with the peak lake level requires a joint

probability analysis.  However there is insufficient historical data to undertake such an analysis.

If the entrance is open and a 100y ARI ocean event occurs the resulting peak flood level will reach
of the order of 2.6 mAHD (assuming peak ocean levels taken from Reference 10), 2.4 mAHD in the

50y ARI and 2.2 mAHD in the 20y ARI.

This design scenario is likely to have a frequency of occurrence less than a 100y ARI as for the
majority of the time the entrance is closed.  The influence of ocean levels on a closed entrance

depends on the height of the beach berm, the amount of overtopping and the preceding lake level.
“Pumping” of the lake water level will certainly occur as waves break over the berm but the storm

would have to continue for a long time to significantly increase water levels over a 10km2 lake.
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7.4.4 Conclusions on Effect of Elevated Ocean Conditions

For events up to the 100y ARI ocean conditions only becomes a significant contributing factor if the

ocean levels exceed say 1.5 mAHD.  The effect will depend upon the peak height and duration of the
ocean event and the nature of the beach berm during the event.

7.5 Rainfall Induced Design Event with Ocean Levels below 1.5 mAHD

Design flood (lake) levels cannot be determined for Smiths Lake using a traditional rainfall-runoff
approach due to the influence of Council’s entrance opening policy.  If the policy is enforced then the

peak lake levels will not exceed the level at which the lake is opened.  In theory all design events will
therefore reach approximately the same peak level.

The only possible scenario (for a low ocean level condition) that could produce a higher level than

2.1 mAHD (assumed nominal opening level) is if the lake rose to near 2.1 mAHD, Council had not
opened the lake and the design rainfall event occurred.  The lake will rise to whatever is the beach

berm level, overtop and gradually the lake level will fall as scouring of the entrance berm occurs.  For
this scenario the peak lake level would depend on the height of the beach, the volume of runoff

entering the lake and whether Council is able to make an opening in the berm.  Once even a small
opening is made, or the berm is overtopped, the outflow from the lake will erode the beach berm and

the lake level will fall.

The probability of the above scenario occurring is likely to be rarer than the probability of the design
rainfall event under consideration as the design rainfall could equally occur when the lake is open or

half full.  If either of these two latter scenarios occurred then a lake level above 2.1 mAHD would not
occur.

After consideration of the above factors the adopted design approach was determined as follows:

? the starting water level in the lake is 2.2 mAHD (refer Section 6.4),
? Council is able to cut a small opening in the beach berm (0.4 m deep) with an upstream

invert at 1.8 mAHD.  The remainder of the berm is at 3.5 mAHD and is not overtopped but
is eroded as the opening becomes enlarged.  All parameters are identical to those used for

the calibration events (refer Section 6.4),
? the design rainfall commences immediately prior to any outflow from the lake,

? the rate of outflow from the lake and erosion of the beach berm is defined by the calibrated
RUBICON breakout procedure as shown on Figure 12,

? a constant ocean level of 0.5 mAHD was assumed.  As shown by the sensitivity analysis on
Figure 12, a constant or varying ocean level between 1 mAHD has no significant impact on

the peak lake level but does affect the rate of fall of the lake.

The results for the above analysis indicate that for all design events (up to the 500y ARI event) the
maximum increase in water level above the starting level of 2.2 mAHD is 0.1 m (i.e. to 2.3 mAHD).
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Thus the rate of outflow quickly exceeds the rate of inflow due to scouring of the entrance.  Therefore

it is assumed that for all events up to the 500y ARI the peak water level could reach 2.3 mAHD
assuming Council’s current entrance opening procedure.

For the PMF the rate of inflow is significantly greater than the rate of outflow during the initial few

hours of the lagoon opening.  This is due to a combination of the much greater rainfall intensities and
the different rainfall temporal patterns which are used for the PMF compared to those in Australian

Rainfall and Runoff (Reference 4) which are used for all other design events.  As a result, hydraulic
modelling indicates that the PMF may reach 3.5 mAHD.  This scenario assumes that the only exit for

the floodwaters is via the man-made opening (i.e. no overtopping of the remainder of the beach berm).

The rate of rise of the lake during the design events is provided in Table 8.  Up to the 500y ARI event
the rate of rise is a maximum of 0.35 m/hour.  However for the PMF the maximum rate is 1.1 m/hour.

7.6 Design Flood Levels

The peak design flood levels based on the above analysis are:

PMF 3.5 mAHD (rainfall induced)

100y ARI 2.6 mAHD (ocean induced)
50y ARI 2.4 mAHD (ocean induced)

20y ARI 2.3 mAHD (rainfall induced)

For the 200y and 500y ARI the dominant mechanism will be ocean inundation.  However no estimates
of ocean level are available for these events.

7.7 Hydraulic Classification

The Floodplain Development Manual defines three hydraulic categories which can be applied to areas
of the floodplain.  

“Floodways are those areas of the floodplain where a significant discharge of water occurs during

floods.  They are often aligned with naturally defined channels.  Floodways are areas that, even if only
partially blocked, would cause a significant redistribution of flood flow, or a significant increase in flood

levels.”

“Flood storage areas are those parts of the floodplain that are important for the temporary storage of

floodwaters during the passage of a flood.  The extent and behaviour of flood storage areas may
change with flood severity, and loss of flood storage can increase the severity of flood impacts by

reducing natural flood attenuation.  Hence, it is necessary to investigate a range of flood sizes before
defining flood storage areas.”
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“Flood fringe is the remaining area of flood prone land after floodway and flood storage areas have

been defined.”

All land below 1.3 mAHD is considered to be Floodway with land above this Flood Fringe.

7.7.1 Flood Hazard Classification

Provisional (hydraulic) hazard categorisation are based on the depth and velocity of floodways.  As
the velocity of flow is negligible, except near the opening, depth has been the sole criteria adopted

for determining the provisional hazard.  Assuming a 100y ARI flood level of 2.3 mAHD and a depth of
1 m signifying high hazard, all land below 1.3 mAHD is High Hazard and all land above is Low Hazard.

True Flood Hazard is a measure of the overall adverse effects of flooding.  It incorporates threat to

life, danger and difficulty in evacuating people and possessions and the potential for damage, social

disruption and loss of production.  These factors are not included in the provisional (hydraulic) hazard
assessment.

For the true hazard, land is classified as either low or high hazard for a range of flood events.  The

classification is a qualitative assessment based on a number of factors as listed in Table 11.

Table 11: Hazard Classification

Criteria Weight (1) Comment

Rate of Rise of Floodwaters Low Rises slowly.
Duration of Flooding Low Goes quickly (if berm is opened).
Effective Flood Access Low Easy access to high ground.
Size of the Flood Low All floods reach same level.
Effective Warning and
Evacuation Times

Low Residents aware of flooding due to rainfall.

Additional Concerns such as
Bank Erosion, Debris, Wind
Wave Action

Medium Wind waves may introduce problem along the foreshore.  Ocean
waves will enter if the entrance is open and may impact on the
eastern foreshore of the Smiths Lake township.  Fortunately the
buildings in this area are elevated and the heavy vegetation will
dissipate the wave energy.

Evacuation Difficulties Low Relatively easy access to high ground.
Flood Awareness of
the Community

Medium All residents are aware that lake will rise with rainfall but probably not
if due to ocean inundation.

Depth and Velocity of
Floodwaters

Low Up to 1 m depth but nil velocity.

Ocean Effects High Will have a significant impact if the entrance is open.
Note: (1)  Relative weighting in assessing the hazard.

Based upon the above assessment the preliminary hydraulic hazard classification should change
when taking account of all other hazard factors particularly the effect of ocean inundation.  There is

no recognised qualitative procedure for taking the above factors into account but a qualitative
procedure suggests a more appropriate boundary between Low and High hazard is 2 mAHD.
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7.8 Sensitivity Analysis

7.8.1 Entrance Opening 

The only factors having a significant impact on the preceding design flood estimation approach are
related to the entrance opening.  For example raising the entrance opening level by 0.1 m would
produce a similar 0.1 m rise in the rainfall induced design flood level.  If Council could not undertake
an opening at the agreed level the lake would rise to the height of the berm.

Detailed sensitivity analysis of changing the entrance opening procedure was not undertaken,
however a review of the design data shown in Table 8 provides a general assessment of the likely
implications of a large rainfall event occurring and Council being unable to open the entrance.  The
maximum rise for various design events and durations is shown in the graph below.  

Thus given the following assumptions:
C a starting lake level of 2.2 mAHD (Section 7.5),
C a 100y ARI lake level of 2.6 mAHD (ocean induced - refer Section 7.6),
C Council is unable to open the entrance,
C rainfall losses of 2.5 mm/hour,
C the beach berm is of infinite height,
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the lake would not reach the 100y ARI lake level (0.4m rise) in a 10y ARI and smaller event.  For larger

events the 100y ARI level of 2.6 mAHD would be reached in 2 hours in a 500y ARI event and
approximately 4 hours in a 100y ARI event.  The graph also illustrates that for the longer duration

events there is a point where the peak rise decreases as the total losses (continuing loss of 2.5 mm/h)
reduce the total rainfall excess (rainfall minus losses). 

The effect of changing the adopted downstream ocean level was simulated for rainfall induced events

with the results shown on Figure 12.  These indicate no change to the peak lake level but a significant
impact on the rate of fall of the lake.

7.8.2 Ocean Effects 

For ocean induced events the most significant factor is the estimated peak ocean level and in
particular the estimate of wave setup.  Any change to these levels will have a direct affect on the

design flood levels.
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8. THE COST OF FLOODING

The cost of flood damages and the extent of the disruption to the community depends upon many

factors including:
• the magnitude (depth, velocity and duration) of the flood,

• land usage and susceptibility to damage,
• awareness of the community to flooding,

• effective warning time,
• the availability of an evacuation plan or damage minimisation program,

• physical factors such as erosion of the river bank, flood borne debris, sedimentation.

Flood damages can be defined as being “tangible” or “intangible”.  Tangible damages are those for
which a monetary value can be assigned, in contrast to intangible damages, which cannot easily be

attributed a monetary value (stress, injury, loss to life, etc.).  

8.1 Tangible Flood Damages

While the total likely damages in a given flood is useful to get a “feel” for the magnitude of the flood

problem, it is of little value for absolute economic evaluation.  When considering the economic
effectiveness of a proposed mitigation option, the key question is what are the total damages

prevented over the life of the option?  This is a function not only of the high damages which occur in
large floods but also of the lesser but more frequent damages which occur in small floods.

The standard way of expressing flood damages is in terms of average annual damages (AAD).  AAD

represents the equivalent average damages that would be experienced by the community on an
annual basis, by taking into account the probability of a flood occurrence.  By this means the smaller

floods, which occur more frequently, are given a greater weighting than the rare catastrophic floods.

A flood damages assessment was undertaken for existing development in the Smiths Lake  community
and is summarised below.

8.1.1 Building Floors

A detailed survey of all building floor levels less than 4 mAHD was undertaken by a Registered
Surveyor in October 2006.  The results indicate the following:

• lowest residential floor level = 3 mAHD,
• number of residential floors below 3.5 mAHD = 7,

• number of residential floors below 4.0 mAHD = 17,
• lowest non-residential floor level = 2.2 mAHD (Frothy Coffee Café),

• 2nd lowest non-residential floor level = 2.4 mAHD (Fishing boatshed),
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• 3rd, 4th lowest non-residential floor level = 3 mAHD (Machinery Shed, University Zoology

Room),
• number of non-residential floors below 4 mAHD = 33.

Based on the above data the only building likely to experience flood damages as a result of flooding

(assuming flooding does not reach 3 mAHD) is the Frothy Coffee Café.

The café is a commercial enterprise which experiences minimal damage to the building or contents
(as they can easily be raised) but significant damage due to loss of trade (café and boat hire

business).

The magnitude of the flood damages is impossible to accurately estimate as it will depend upon many
factors, including:

• duration of flooding, a key factor is how long the lake remains near the opening level
(2.1 mAHD).  It is likely that customers will not frequent the café if they see the lake water

level close to the floor level,
• the time of year (holiday period, long weekend),

• the weather conditions (in severe weather conditions that cause flooding, few will wish to
hire boats or frequent cafes).

For the above reasons no quantification of the tangible damages at the Frothy Coffee Café has been

attempted.

8.1.2 Road Levels

The detailed survey also included all roads with levels below 4 mAHD.  A summary of this information
is provided on Figure 13.  This shows that the lowest road levels from Tarbuck to Smiths Lake along

The Lakes Way is 2.5 to 3 mAHD with the majority greater than 3 mAHD.

8.1.3 Other Affected Land Users on the Floodplain

The significant other affected land users in the floodplain are:

• the Sandbar and Bushland Caravan Parks near Cellito Beach,
• the university research station on the southern shore,

• the golf course near Cellito Beach.

The degree of affectation caused by flooding of these sites will depend upon a number of factors
(similar to those for the Frothy Coffee Café).  Probably the most significant of users are the two

caravan/camping parks.  As shown on Figure 8b the lower sites were inundated in the November 2006
event.  However as far as we are aware no vans or other residences were inundated above floor

level.  It should be noted that this situation may be different if a similar event occurred during the
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holiday season.  Although, given that there is a few hours of warning and residents will note the lake

level rising, it should be possible to safely move vans and tents to high ground.

8.2 Intangible Flood Damages

The intangible damages associated with flooding are inherently more difficult to estimate.  In addition
to property damage (internal, external and structural) additional costs/damages are incurred by

residents affected by flooding, such as stress, risk/loss to life, injury etc.

In many flood liable communities the magnitude of intangible flood may exceed the tangible damages.
At Smiths Lake this is unlikely to be the case due to the relatively slow rate of rise of the lake and the

acceptance by the community that lake levels will rise until the entrance is opened to release the
floodwaters.
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